Skip to main content
Log in

Critical Assessment of P2O5 Activity Coefficients in CaO-based Slags during Dephosphorization Process of Iron-based Melts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, activity \( a_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) of P2O5 in the CaO-based slags has been determined using the calculated comprehensive mass action concentration \( N_{{{\text{Fe}}_{t} {\text{O}}}}^{{}} \) of iron oxides by the ion and molecule coexistence theory (IMCT) for representing the reaction ability of Fe t O, i.e., activity of \( a_{{{\text{Fe}}_{t} {\text{O}}}}^{{}} \). The collected ten models from the literature for predicting activity coefficient \( \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) of P2O5 in CaO-based slags have been evaluated based on the determined activity \( a_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) of P2O5 by the IMCT as the criterion. The collected ten models of activity coefficient \( \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) of P2O5 in CaO-based slags can be described in the form of a linear function as \( \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \equiv y = c_{0} + c_{1} x \), in which independent variable \( x \) represents the chemical composition of slags, intercept \( c_{0} \) including the constant term depicts temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope \( c_{1} \) is regressed by the experimental results. Thus, a general approach for obtaining good prediction results of activity \( a_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) of P2O5 in CaO-based slags is proposed by revising the constant term in intercept \( c_{0} \) for the collected ten models. The better models with an ideal revising possibility or flexibility in the collected ten models have been selected and recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a i :

Activity of component i in slags or element i in liquid iron, (–)

\( a_{{{\text{R, }}i}} \) :

Activity of components i in slags or element i in liquid iron relative to pure solid or liquid component i or element i as standard state with mole fraction \( x_{i} \) as concentration unit and following Raoult’s law under the condition of taking ideal solution as reference state, i.e., \( a{_{{\rm R},i}} = x{_{i}} \gamma{_{i}} \), (–)

\( a_{\%,{{i}}} \) :

Activity of element i in liquid iron referred to 1 mass percentage of element i as a standard state with mass percentage [pct i] as a concentration unit and obeying Henry’s law under the condition of taking the infinitely dilute ideal solution as a reference state, i.e., \( a_{\%,{{i}}} = [{\text{pct }}i]f_{\%,{{i}}} \), (–)

\( c_{0} \) :

Coefficient of intercept in linear function of \( y = c_{0} + c_{1} x \), (–)

\( c^{\prime}_{0} \) :

Coefficient of intercept in linear function of \( y_{{}}^{\prime} = c_{0}^{\prime} + c_{1}^{\prime} x \), (–)

\( c_{1} \) :

Coefficient of slope in linear function of \( y = c_{0} + c_{1} x \), (–)

\( c^{\prime}_{1} \) :

Coefficient of slope in linear function of \( y_{{}}^{\prime} = c_{0}^{\prime} + c_{1}^{\prime} x \), (–)

\( d_{0}^{{}} \) :

Coefficient of intercept in linear function of \( \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{ predicted}}}}^{{}} = d_{0}^{{}} + d_{1}^{{}} \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{determined}}}}^{{}} \), (–)

\( d_{1}^{{}} \) :

Coefficient of slope in linear function of \( \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{ predicted}}}}^{{}} = d_{0}^{{}} + d_{1}^{{}} \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{determined}}}}^{{}} \), (–)

\( f_{\%,{{i}}} \) :

Activity coefficient of element i in liquid iron related with activity \( a_{\%,{{i}}}\), (–)

\( \Delta_{\text{r}} G_{{{\text{m, }}i}}^{\Theta } \) :

Standard molar Gibbs free energy change of reaction for forming component i or structural unit i, (J/mol)

\( K_{i}^{\Theta } \) :

Standard equilibrium constant of chemical reaction for forming component i or structural unit i, (–)

M i :

Relative atomic mass of element i or relative molecular mass of component i, (–)

m :

Number of experimental points, (–)

\( p_{i} \) :

Partial pressure of species i in gaseous phase, (Pa)

\( p^{\Theta } \) :

Standard pressure of gas at sea level and 273 K as 101,325 Pa, (Pa)

R :

Gas constant, (8.314 J/(mol·K))

\( R^{2} \) :

Adjusted parameter of the regressed function, (–)

T :

Absolute temperature, (K)

\( x \) :

Independent variable, (–)

\( x_{i} \) :

Mole fraction of component i, (–)

\( y \) :

Dependent variable, (–)

\( y_{{}}^{\prime} \) :

Dependent variable, (–)

\( \Delta y \) :

Disagreements between determined and predicted results of \( \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \), i.e., \( \Delta y = \Delta \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} = \left| {y - y^{\prime} } \right| = \left| {c_{0} - c_{0}^{\prime} } \right| \), (–)

\( \overline{\Delta y} \) :

Mean disagreements between determined and predicted results of \( \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) for m experimental points, i.e., \( \overline{\Delta y} = \frac{{\Delta \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} }}{m} = \frac{{\left| {y - y_{{}}^{\prime\prime} } \right|}}{m} = \frac{{\left| {\Delta y} \right|}}{m} \), (–)

(pct i):

Mass percentage of component i in slags, (\( \times \)10−2, –)

[pct i]:

Mass percentage of element i in liquid iron, (\( \times \)10−2, –)

(i):

Species i in slag phase, (–)

[i]:

Species i in liquid iron phase, (–)

\( \varLambda \) :

Optical basicity of slags, (–)

\( \varLambda_{i} \) :

Optical basicity of component i in slags, (–)

\( \delta_{{{\text{slope, }}\gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} }} \) :

Deviation of slope \( c_{1}^{\prime} \) relative to measured slope \( c_{1}^{{}} \) as a basis, defined as \( \delta_{{{\text{slope, }}\gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} }} = \frac{{\left| {c_{1}^{{}} - c_{1}^{\prime} } \right|}}{{c_{1}^{{}} }} \times 100 \), (\( \times \)10−2, –)

\( \delta_{\text{slope}}^{{}} \) :

Deviation of slope \( d_{1}^{{}} \) relative to 1.0 as a basis, defined as \( \delta_{\text{slope}}^{{}} = \sum {\left( {\frac{{\left| {1.0 - d_{1}^{{}} } \right|}}{1.0}} \right)} \times 100 \), (\( \times \)10−2, –)

\( \delta_{{\gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} }} \) :

Mean deviation of \( \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} \) between determined and predicted ones by model for m points, defined as \( \delta_{{\gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} }} }} = \frac{1}{m}\sum {\left( {\frac{{\left| {\log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{determined}}}}^{{}} - \log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{ predicted}}}}^{i} } \right|}}{{\left| {\log \gamma_{{{\text{P}}_{ 2} {\text{O}}_{ 5} ,{\text{determined}}}}^{{}} } \right|}}} \right)} \times 100 \), (\( \times \)10−2, –)

References

  1. A. Bergman and A. Gstafsson: Steel Res., 1988, vol. 59, no. 7, pp. 281-8.

    Google Scholar 

  2. R. Selin. Ph.D. Dissertation, Royal Institute of Technology, Stockholm, 1987.

  3. R. Selin: Scand. J. Metall., 1991, vol. 20, no. 5, pp. 279-99.

    Google Scholar 

  4. E. Schürmann and H. Fischer: Steel Res., 1991, vol. 62, pp. 338-45.

    Google Scholar 

  5. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2016, DOI:10.1007/s11663-016-0653-6.

    Google Scholar 

  6. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, 42B, no. 4, pp. 738-70.

    Article  Google Scholar 

  7. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, 42B, no. 5, pp. 951-76.

    Article  Google Scholar 

  8. X.M. Yang, M. Zhang, G.M. Chai, J.Y. Li, and J. Zhang: Ironmaking Steelmaking, 2015, 10.1179/1743281215Y.0000000032

    Google Scholar 

  9. E.T. Turkdogan and J. Pearson: J. Iron Steel Inst., 1953, vol. 175, no. 12, pp. 398-401.

    Google Scholar 

  10. E.T. Turkdogan and J. Pearson: J. Iron Steel Inst., 1954, vol. 176, no. 1, pp. 59-63.

    Google Scholar 

  11. H. Suito, R. Inoue, and M. Takada: Trans. ISIJ, 1981, vol. 21, no. 4, pp. 250-9.

    Article  Google Scholar 

  12. H. Suito, R. Inoue, and M. Takada: Tetsu-to-Hagané, 1981, vol. 67, no. 16, pp. 2645-54.

    Google Scholar 

  13. H. Suito and R. Inoue: Trans. ISIJ, 1982, vol. 22, no. 11, pp. 869-77.

    Article  Google Scholar 

  14. T. Mori: Bull. Jap. Inst. Metals, 1984, vol. 23, no. 4, pp. 354-61.

    Article  Google Scholar 

  15. T. Mori: Trans. Jpn. Inst. of Met., 1984, vol. 25, no. 11, pp. 761-71.

    Article  Google Scholar 

  16. T. Ting, H.G. Katayama, and A. Tanaka: Tetsu-to-Hagané, 1986, vol. 77, no. 2, pp. 225-32.

    Google Scholar 

  17. D.R. Gaskell: Metall. Trans. B, 1989, vol. 20B, no. 1, pp. 113-8.

    Article  Google Scholar 

  18. T. Usui, K. Yamada, Y. Kawal, S. Inoue, H. Hiroaki, and Y. Nimura: Tetsu-to-Hagané, 1991,vol. 77, no. 10, pp. 1641-8.

    Google Scholar 

  19. H. Suito and R. Inoue: ISIJ Int., 1995, vol. 35, no. 3, pp. 258-65.

    Article  Google Scholar 

  20. E.T. Turkdogan: ISIJ Int., 2000, vol. 40, no. 10, pp. 964-70.

    Article  Google Scholar 

  21. S. Basu, A.K. Lahiri, and S. Seetharaman: ISIJ Int., 2007, vol. 47, no. 8, pp. 1236-8.

    Article  Google Scholar 

  22. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2016, DOI:10.1007/s11663-016-0652-7.

    Google Scholar 

  23. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, 49, no. 12, pp. 1828-37.

    Article  Google Scholar 

  24. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, 50, no. 10, pp. 1362-72.

    Article  Google Scholar 

  25. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, 42B, no. 6, pp. 1150-80.

    Article  Google Scholar 

  26. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and J. Zhang: Metall. Mater. Trans. B, 2012, 43B, no. 2, pp. 241-66.

    Article  Google Scholar 

  27. X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, 83, no. 3, pp. 244-58.

    Article  Google Scholar 

  28. X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., 2014, 85, no. 3, pp. 347-75.

    Article  Google Scholar 

  29. X.M. Yang, J.Y. Li, G.M. Chai, M. Zhang, and J. Zhang: Metall. Mater. Trans. B, 2014, 45B, no. 6, pp. 2118-37.

    Article  Google Scholar 

  30. J.Y. Li, M. Zhang, M. Guo, and X.M. Yang: Metall. Mater. Trans. B, 2014, 45B, no. 5, pp. 1666-82.

    Article  Google Scholar 

  31. X.M. Yang, J.Y. Li, M. Zhang, and J. Zhang: Ironmaking Steelmaking, 2016, vol. 43, no. 1, pp. 39-55.

    Article  Google Scholar 

  32. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  33. J.X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, 2nd ed., Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  34. H. Suito and R. Inoue: Trans. ISIJ, 1984, 24, no. 4, pp. 301-7.

    Article  Google Scholar 

  35. S. Ban-ya and S. Matoba: Tetsu-to-Hagané, 1962, vol. 48, no. 8, pp. 925-32.

    Google Scholar 

  36. X.H. Huang: Principles of Ironmaking and Steelmaking, 3rd ed., Metallurgical Industry Press, Beijing, China, 2005.

    Google Scholar 

  37. A.S. Venkatadri, C.R. Srinivasan, and S.K. Gupta: Sand. J. Metall., 1989, vol. 18, no. 2, pp. 89-94.

    Google Scholar 

  38. D.J. Sosinsky and I.D. Sommerville: Metall. Trans. B, 1986, vol. 17B, no. 2, pp. 331-7.

    Article  Google Scholar 

  39. T. Nakamura, Y. Ueda, and J.M. Toguri: Proc. Third Int. Conf. Metall. Slags and Fluxes, University of Strathclyde, The Institute of Metals, London, UK. 1988. pp. 146–49.

  40. K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, no. 4, pp. 262-8.

    Article  Google Scholar 

  41. J.A. Duffy and M.D. Ingram: J. Am. Chem. Soc., 1971, vol. 93, no. 24, pp 6448-54.

    Article  Google Scholar 

  42. J.A. Duffy and M.D. Ingram: J. Inorg. Nucl. Chem., 1975, vol. 37, no. 5, pp. 1203-6.

    Article  Google Scholar 

  43. J.A. Duffy, M.D Ingram, and I.D. Sommerville: J. Chem. Soc., Faraday Trans., I, 1978, vol. 74, pp. 1410-9.

    Article  Google Scholar 

  44. J.A. Duffy: Geochimica et Cosmochimica Acta, 1993, vol. 57, no. 16, pp. 3961-70.

    Article  Google Scholar 

  45. K.C. Mills: in Basicity and Optical basicities of Slags (Chapter 2), in Slag Atlas, 2nd ed., Ed. V. D. Eisenhüttenleute, Woodhead Publishing Limited, Abington Hall, Abington, Cambridge, CB21 6AH, UK. 1995. pp. 9–19.

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51174186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-min Yang.

Additional information

Manuscript submitted October 2, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xm., Li, Jy., Chai, GM. et al. Critical Assessment of P2O5 Activity Coefficients in CaO-based Slags during Dephosphorization Process of Iron-based Melts. Metall Mater Trans B 47, 2330–2346 (2016). https://doi.org/10.1007/s11663-016-0654-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0654-5

Keywords

Navigation