Skip to main content
Log in

Influence of Sulfur Species on Current Efficiency in the Aluminum Smelting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Anode impurities are the major source of sulfur in aluminum electrolysis. Sulfur in anodes is mainly found as organic compounds. Alumina also introduces small quantities of sulfur, typically in the form of sulfates. The scarcity and cost of low-sulfur raw materials and the possibility of sulfur removal from the cell by means of flue gas may make high-sulfur content anodes a viable option. However, some anode impurities are known to affect current efficiency in aluminum production and caution must be exercised. The effect of increased sulfur content in the aluminum electrolysis electrolyte must be studied. This paper explores the effect of increased sulfur concentration in the electrolyte on current efficiency in a laboratory cell. Sodium sulfate was added to the electrolyte as a source of sulfur at regular time intervals to maintain a constant sulfur concentration. Current efficiency decreased by 1.1 pct per each 100 mg/kg (ppm) increase in sulfur concentration in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Kvande and P. A. Drabløs: JOEM, 2014, vol. 56, no. 5S, pp. S23–S32.

    Article  Google Scholar 

  2. M. Tangstad (ed): Metal Production in Norway. Akademika, Trondheim, 2013, p. 50.

  3. J. Thonstad, P. Fellner, G.M. Haarberg, J. Híveš, H. Kvande, and Å. Sterten: Aluminum electrolysis – Fundamentals of the Hall-Héroult process, 3rd ed., Aluminum-Verlag GmbH, Düsseldorf, Germany, 2001.

    Google Scholar 

  4. A. Solheim: Light Metals 2014. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, pp. 753–758.

  5. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad: Aluminum electrolysis – Fundamentals of the Hall-Héroult process, 2nd ed., Aluminum-Verlag GmbH, Düsseldorf, Germany, 1992.

    Google Scholar 

  6. Å. Sterten, P.A. Solli, and E. Skybakmoen: J. Appl. Electrochem., 1998, 28, pp. 781-789.

    Article  Google Scholar 

  7. P.A. Solli: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 1993, ISBN: 82-7119-477-1.

  8. E.W. Thisted: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 2003, ISBN: 82-471-5603-2.

  9. Å. Sterten, P.A. Solli and E. Skybakmoen: J. Appl. Electrochem., 1997, 28, pp. 781–789.

    Article  Google Scholar 

  10. M.G. Escard and G.M. Haarberg, eds.: Molten Salts Chemistry and Technology, Wiley, New York, 2014, pp. 71–75.

  11. R. Meirbekova, J. Thonstad, G.M. Haarberg, and G. Saevarsdottir: Light Metals 2014. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2014, pp. 759–764.

  12. J. Hajasova: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 2007.

  13. M. Sørlie, Z. Kuang, and J. Thonstad: Light Metals 1994. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1994, pp. 659–665.

  14. H. Kuang, J. Thonstad, and M.Sørlie: Carbon, 1995, N10, vol. 33, pp. 1479–1484

  15. T. Eidet, M. Sørlie, and J. Thonstad: Light Metals 1997. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1997, pp. 511–517.

  16. M. Sørlie and T. Eidet: Light Metals 1998. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1998, pp. 763–768.

  17. L. Edwards: JOM, 2014, vol. 67, no. 2, pp. 308-321

    Article  Google Scholar 

  18. V.L. Bullough, H.C. Marshall, and C.J. McMinn: Light Metals. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1971, pp. 411–423.

  19. E. Barillon and J. Pinnon: Light Metals. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1977, pp. 289–299.

  20. G.P. Gilmore and V.L. Bullough: Light Metals. The Minerals, Metals & Materials Society (TMS), Warrendale, PA 1982, pp. 741–752.

  21. S. Pietrzik and J. Thonstad: Light Metals 2012. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2012, pp. 659–664.

  22. S.S. Jones, R.D. Hildebrandt, and M.C. Hedlund: Light Metals 1979. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 1979, vol. 2, pp. 553–574.

  23. R.J. Thorne, C. Sommerseth, E. Sandnes, O. Kjos, T.A. Aarhaug, L.P. Lossius, H. Linga, and A.P. Ratvik: Light Metals 2013. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2013, pp. 1207–1211.

  24. R.J. Thorne, C. Sommerseth, A.M. Svensson, E. Sandnes, L.P. Lossius, H. Linga, and A.P. Ratvik: Light Metals 2014. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2014, pp. 1213–1217.

  25. K. Grjotheim, T. Halvorsen, and S. Urnes, Can. J. of Chem., 1959, 37, pp. 1170-1175.

    Article  Google Scholar 

  26. I. Koštenská and M. Malinovský: Chem. Zvesti, 1982, 36, pp. 159-167.

    Google Scholar 

  27. V. Danielik, J. Gabčová: Thermochimica Acta, 2001, 366, pp. 79-87

    Article  Google Scholar 

  28. P. Fellner, J. Gabčová, V. Danielik, and M. Laska: Chem Papers, 1993, vol. 47(4), pp. 215–217.

    Google Scholar 

  29. K. Matiašovský and M. Malinovský: Chem. Zvesti, 1965, 19, pp. 41-45.

    Google Scholar 

  30. V.V. Burnakin, R.K. Popkova, V.I. Zalivnoy, P.V. Polyakov, and V.I. Kolosova: Sov J Non-Ferrous Met Res, 1982, vol. 2(4), pp. 282-285.

    Google Scholar 

  31. M.B. Shvartsberg, Trudy VAMI, 1937, N14, 113.

    Google Scholar 

  32. Yu.V. Baimakov, and M.M. Vetykov, Molten salts Electrolysis, Metallurgiya, Moscow, 1966.

    Google Scholar 

  33. M. Ambrová, P. Fellner, J. Gabcova, and A. Sykorova (2005) Chem. Papers-Slovak Academ Sci., vol. 4, no. 59, pp. 235-239.

    Google Scholar 

  34. N.Q. Minh and N.P. Yao: J. Electrochem. Soc., 1984, vol. 131, No. 10, pp. 2279–2282.

    Article  Google Scholar 

  35. R. Meirbekova, G. M. Haarberg, J. Thonstad, T. A. Aarhaug and G. Saevarsdottir: ECS Transactions, 2015, vol 69, no. 15, pp. 13-23.

    Article  Google Scholar 

  36. P. A. Solli, T. Haarberg, T. Eggen, E. Skybakmoen and Å. Sterten: Light Metals, TMS, Warrendale, PA 1994, pp. 195-203.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Alcoa Fjarðaál, HRV Engineering, SINTEF, and NTNU. Authors would like to thank Ms. Anne Tofte for her invaluable contribution to this work. Authors would also like to express endless gratitude to Dr. Andrei Manolescu, Dr. Arne P. Ratvik, Dr. Thor A. Aarhaug, Dr. Ole S. Kjos, Mr. Asbjørn Solheim, and Dr. Marketa Valterova for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rauan Meirbekova.

Additional information

Manuscript submitted July 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meirbekova, R., Haarberg, G.M., Thonstad, J. et al. Influence of Sulfur Species on Current Efficiency in the Aluminum Smelting Process. Metall Mater Trans B 47, 1309–1314 (2016). https://doi.org/10.1007/s11663-016-0595-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0595-z

Keywords

Navigation