Skip to main content
Log in

Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Many factors influence the chemical composition in electroslag remelting (ESR) steel, including atmosphere in crucible, melting rate, slag composition, deoxidation, and so on. Fluoride-based slag, which is exposed to liquid metal directly, influences the chemical composition of ESR ingots to a large extent. The present paper focuses on the effect of slag on the titanium, silicon, and aluminum contents in ingots based on the interaction of the slag and metal. In present work, superalloy of GH8825 and several slags containing different CaO contents have been employed for investigating the effect of slag on titanium, silicon, and aluminum contents in an electrical resistance furnace under argon atmosphere. Results indicate that the higher CaO content in slag has better capacity for avoiding loss of titanium caused by the reaction of titanium with silica in slag, especially in case of remelting superalloy with high titanium and low silicon content. The CaO has a great effect on the activities of TiO2, SiO2, and Al2O3. Thermodynamic analysis is applied to investigate the CaO behavior. Based on the ion and molecule coexistence theory of slag, activity model is established to calculate the activities of components containing titanium, silicon, and aluminum elements in a six-component slag consisting of CaO-CaF2-Al2O3-SiO2-TiO2-MgO. The components containing titanium, silicon, and aluminum in slag are mainly CaO·TiO2, 2CaO·SiO2, CaO·SiO2, CaO·Al2O3, and MgO·Al2O3. With the increase of CaO mass fraction in slag, the activity coefficient of SiO2 decreases significantly, whereas slightly change happens for Al2O3. As a result, the \( \lg ({{\gamma_{{{\text{SiO}}_{2} }} } \mathord{\left/ {\vphantom {{\gamma_{{{\text{SiO}}_{2} }} } {\gamma_{{{\text{TiO}}_{2} }} }}} \right. \kern-0pt} {\gamma_{{{\text{TiO}}_{2} }} }}) \) decreases with increasing CaO content, which is better for preventing loss of titanium caused by the reaction of titanium with silica in slag. The slag with high CaO and appropriate TiO2 content is suitable for electroslag remelting of GH8825.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans, H. Poisson: Metall. Mater. Trans. B, 2009, vol.40B, no.3, pp. 271-280.

    Article  Google Scholar 

  2. S.K. Matity, N.B. Ballal, G. Goldhahn, R. Kwaalla: ISIJ Int., 2009, vol.49, no.6, pp. 910-902.

    Article  Google Scholar 

  3. S.F. Medina, A. Cores: ISIJ Int., 1993, vol.33, no.12, pp.1251-1244.

    Article  Google Scholar 

  4. J.C. Stoephasius, J. Reitz, B. Friedrich: Advanced engineering materials, 2007, vol.9, no.4, pp.252-246.

    Article  Google Scholar 

  5. T.R. Bandyopadhyay, P.K. Rao, N. Prabhu: Metallurgical and Mining Industry, 2012, vol.4, no.1, pp.16-6.

    Google Scholar 

  6. J.D. Busch, J.J. Debarbadillo, J.M. Matthew: 141st TMS Annual Meeting, Orlando, 2012, pp.402-395.

  7. S.G. Stovpchenko, L. Gusiev, L. Medovar: 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, 2014, pp. 47–56.

  8. W.J. Carmack, G.R. Smolik, K.A. Mccarthy: Journal of Nuclear Materials, 1996, vol.233, no.10, pp.420-416.

    Article  Google Scholar 

  9. V.Z. Kutsova, D.E. Belokurov: Liteinoe Proizvodstvo, 1991, vol. 4, no. 4, 18-19

    Google Scholar 

  10. D. Ablitzer: Journal De Physique, 1993, vol.3, no.7, pp.882-873.

    Google Scholar 

  11. H.B. Bomberger, F.H. Froes: Journal of Metals, 1984, vol.36, no.12, pp.47-39.

    Google Scholar 

  12. E. Frank, L. Eugene, J. Dan: IEEE Transactions on Industry Applications, 1976, vol.12, no.6, pp.551-545.

    Google Scholar 

  13. C.X. Chen, Y. Wang, J. Fu, E.P. Chen: Acta Metallurgica Sinica, 1981, vol.17, no.1, pp.57-51.

    Google Scholar 

  14. G. Hoyle: Electroslag processes principles and practice, Applied Science Publishers, London, 1983.

    Google Scholar 

  15. K. Blazenko, W. Holzgruber: Berg Huettenmaenn Monatsh, 1978, vol.123, no.1, pp.22-17.

    Google Scholar 

  16. V.P. Kubikov, M.M. Klyuev, A.A. Sisev: Steel in the USSR, 1987, vol.17, no.11, pp. 505-503.

    Google Scholar 

  17. Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  18. G. Pateisky: Journal of vacuum science & technology, 1972, vol.9, no.6, pp. 1323-1318.

    Article  Google Scholar 

  19. Z.H. Jiang: The Physical Chemistry and Transmission during Electroslag Remelting, Northeastern University Press, Shenyang, China, 2000.

    Google Scholar 

  20. K. Schwerdtfeger, W. Wepner, G. Pateisky: Ironmaking Steelmaking, 1978, vol.5, no.3, pp. 143-135.

    Google Scholar 

  21. W. Jihe: Chin.J.Met.Sci.Technol., 1989, vol.5, pp. 245-235.

    Google Scholar 

  22. W. Jerzak, Z. Kalicka: Archives of Metallurgy and Materials, 2012, vol.57, no.11, pp. 455-449.

    Google Scholar 

  23. A. Karasev, H. Suito: Metall. Mater. Trans. B, 1999, vol.20B, no.4, pp. 257-249.

    Article  Google Scholar 

  24. J.J. Pak, Y.S. Jeong, S.J. Tae, D.S. Kim: Metall. Mater. Trans. B, 2005, vol.36, no.8, pp.493-489.

    Article  Google Scholar 

  25. K. Suzuki, S.B. Ya, M. Hino: ISIJ Int., 2002, vol. 42, no.2, pp.149-146.

    Article  Google Scholar 

  26. T. Yoshikawa, K. Morita: Metall. Mater. Trans. B, 2007, vol.28B, no.8, pp.680-671.

    Article  Google Scholar 

  27. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, H.J. Guo: ISIJ Int., 2009, vol.49, no.12, pp. 1837-1828.

    Article  Google Scholar 

  28. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai: Metall. Mater. Trans. B, 2011, vol.42B, no.12, pp. 1180-1150.

    Article  Google Scholar 

  29. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, J. Zhang: Metall. Mater. Trans. B, 2011, vol.42, no.12, pp. 977-951.

    Article  Google Scholar 

  30. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang: Metall. Mater. Trans. B, 2011, vol.42, no.8, pp. 770-738.

    Article  Google Scholar 

  31. X.M. Yang, C.B. Shi: Steel Res. Int., 2012, vol.83, no.3, pp. 257-244.

    Article  Google Scholar 

  32. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, USA, 1980.

    Google Scholar 

  33. Z.Z. Liu, W. Wu, X.L. Guo: Iron and steel, 2013, vol.48, no.6, pp. 49-35.

    Google Scholar 

  34. I. Barin: Thermochemical Data of Pure Substances, Wiley-vch Verlag Gmbh Press, Weinheim, 1995.

    Book  Google Scholar 

  35. J. Barin, O. Knacke, O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer, New York, USA, 1977.

    Book  Google Scholar 

Download references

Acknowledgments

This project supported by the National Nature Science Foundation of China with the Grant No. 51274266 and supported by Joint Research Fund of National Nature Science Foundation of China and Baosteel Group Corporation with the Grant No. U1360103. In addition, this project is supported by Liaoning Excellent Talents in University with the Grant No. LR2013009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Hua Jiang.

Additional information

Manuscript submitted May 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZH., Hou, D., Dong, YW. et al. Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting. Metall Mater Trans B 47, 1465–1474 (2016). https://doi.org/10.1007/s11663-015-0530-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0530-8

Keywords

Navigation