Skip to main content
Log in

The Use of Combustion Reactions for Processing Mineral Raw Materials: Metallothermy and Self-propagating High-temperature Synthesis (Review)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The use of metallothermy (MT) and self-propagating high-temperature synthesis (SHS) is considered for processing different geological and technogenic materials. Traditional MT and SHS processes for production of various metals and nonmetal materials are widely known. Another rapidly developing direction is that connected with the use of ores, concentrates, minerals, and technogenic waste products as one of the components of a thermite mixture, both for the treatment of mineral raw by means of MT or SHS resulting in semi-products and for technological, analytical, and ecological purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Beckert: Schweissen und Schneiden, 2002, vol. 54(9), pp. 522-526.

    Google Scholar 

  2. L. Durães, B.F.O. Costa, R. Santos, A. Correia, J. Campos, and A. Portugal: Materials Science and Engineering A, 2007, vol. 465(1−2), pp. 199-210.

    Article  Google Scholar 

  3. A.G. Merzhanov (1980) Int. Chem. Eng. 20(1):150-171.

    Google Scholar 

  4. B.S.B. Reddy, K. Das, and S. Das: J. Mater. Sci., 2007, vol. 42(22), pp. 9366-9378.

    Article  Google Scholar 

  5. A.G. Merzhanov: Russian Chemical Reviews, 2003, vol. 72(4), pp. 289-311.

    Article  Google Scholar 

  6. K. Morsi: Journal of Materials Science, 2012, vol. 47(1), pp. 68-92.

    Article  Google Scholar 

  7. Z.A. Munir and U. Anselmi-Tamburini: Materials Sci. Reports, 1989, vol. 3(7-8), pp. 277-365.

    Article  Google Scholar 

  8. S.C. Cox, K.K. Mallick: Cer. Trans., 2012; 237:19-33.

    Google Scholar 

  9. P. Istomin, A. Nadutkin, and V. Grass: Cer. Int., 2013, vol. 39(4), pp. 3663-3667.

    Article  Google Scholar 

  10. A. Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang: Adv. Chem. Eng., 1998; 24(3):79-226.

    Article  Google Scholar 

  11. Ch.K. Gupta: Chemical Metallurgy: Principles and Practice. Wiley, New York, 2006, pp. 359-399.

    Google Scholar 

  12. M.Kh. Ziatdinov, I.M. Shatokhin: Metallurgist, 2008; 52(11–12):705-713.

    Article  Google Scholar 

  13. M. Koizumi, (ed.): Khimiya sinteza szhiganiem (Chemistry of Combustion Synthesis), Mir, Moscow, 1998 (in Russian).

  14. A.G. Merzhanov: J. Mater. Chem. 2004, 14(12):1779-1786.

    Article  Google Scholar 

  15. J.J. Moore and H.J. Feng: Progress Materials Sci., 1995, vol. 39(4−5), pp. 243-273.

    Article  Google Scholar 

  16. A.A. Borissov, L. De Luca, and A.G. Merzhanov, (Eds.): Self-Propagating High-Temperature Synthesis of Materials, Combustion Science and Technology Book Series, vol. 5, Taylor & Francis, New York, 2002.

  17. K. Yasuda and T.H. Okabe: JOM, 2010, vol. 62(12), pp. 94-101.

    Article  Google Scholar 

  18. V. Babyuk, B. Friedrich, V. Sokolov: World Metall. ERZMETALL 2007, 60(5):255-261.

    Google Scholar 

  19. E.J. Faierson, K.V. Logan, B.K. Stewart, and M.P. Hunt: Acta Astronautica, 2010, vol. 67(1-2), pp. 38-45.

    Article  Google Scholar 

  20. N. Golovchenko, O. Bairakova, S. Aknazarov, G. Ksandopulo, A. Mukasyan (2012) Int. J. SHS 21(3):156-161.

    Google Scholar 

  21. S.Sh. Kazhikenova: Refractories Ind. Ceramics, 2014, vol. 55(2), pp. 108-110.

    Article  Google Scholar 

  22. S.S. Kiparisov, A.L. Beskin, and M.M. Ristic: Science of Sintering, 1985, vol. 17(3), pp. 139-144.

    Google Scholar 

  23. G.I. Ksandopulo, Yu.A. Moiseyeva, R.G. Abdulkarimova, V.L. Efremov, G.A. Petrova (1993) J. Eng. Phys. Thermophys. 65(4):1034-1035.

    Article  Google Scholar 

  24. Yu.S. Naiborodenko, E.G. Sergeeva, and A.A. Zhigalin: International Journal of Self-Propagating High-Temperature Synthesis, 1998, vol. 7(4), pp. 501-506.

    Google Scholar 

  25. A. Olsen, J.R. Stubergh, and T. Vinsand: Metallurgical and Materials Transactions B, 1996, vol. 27(4), pp. 604-609.

    Article  Google Scholar 

  26. P.K. Panda, L. Mariappan, V.A. Jaleel, T.S. Kannan, J. Dubois, and G. Fantozzi: Journal of Materials Chemistry, 1996, vol. 6(8), pp. 1395-1400.

    Article  Google Scholar 

  27. P.K. Panda, L. Mariappan, and T.S. Kannan: Ceramics International, 2000, vol. 26(5), pp. 455-461.

    Article  Google Scholar 

  28. K.B. Podbolotov, E.M. Dyatlova, R.Yu. Popov: Refractories and Industrial Ceramics, 2014, vol. 54(5), pp. 401-406.

    Article  Google Scholar 

  29. E. Ringdalen, S. Gaal, M. Tangstad, and O. Ostrovski: Metallurgical and Materials Transactions B, 2010, 41(6), pp. 1220-1229.

    Article  Google Scholar 

  30. V.N. Sanin, D.E. Andreev, and V.I. Yukhvid: Russian Journal of Non-Ferrous Metals, 2013, vol.54(3), pp 274-279.

    Article  Google Scholar 

  31. G.P. Shveikin and V.A. Perelyaev, Russian Chemical Bulletin, 1997, vol. 46(2), pp. 219-231.

    Article  Google Scholar 

  32. S. Singsarothai and S. Niyomwas: Advanced Materials Research, 2013, vol. 748(August), pp. 46-50.

    Article  Google Scholar 

  33. F.Kh. Urakaev (2009) Int. J. Min. Process. 92(1–2):58-66.

    Article  Google Scholar 

  34. P. Zivanovich, R. Curcich, G. Djurkovich, V. Jokanovich, D. Uskokovich (2001) Int. J. SHS 10(1):91-98.

    Google Scholar 

  35. G. Cao, and R. Orrù: Chemical Engineering Journal, 2002, vol. 87(2), pp. 239-249.

    Article  Google Scholar 

  36. M. Chen, F.-S. Zhang, and J. Zhu: Journal of Hazardous Materials, 2009, vol. 165(1−3), pp. 980-986.

    Article  Google Scholar 

  37. Z. Jianxin, C. Mengjun, and Z. Fushen: Progress in Chemistry, 2009, vol. 21(7−8), pp. 1693-1704.

    Google Scholar 

  38. P. Mossino: Ceramics International, 2004, vol. 30(3), pp. 311–32.

    Article  Google Scholar 

  39. M. Porcu, R. Orrù, A. Cincotti, and G. Cao: Industrial and Engineering Chemistry Research, 2005, vol. 44(1), pp. 85-91.

    Article  Google Scholar 

  40. Z. Qin, X. Mao, M. Chen, X. Yuan, K. Zhao, and N. Liu: Advanced Materials Research, 2012, vol. 518-523(May), pp. 2797-2801.

    Article  Google Scholar 

  41. J.W. Robison Jr.: TMS Annual Meeting, 2012, pp. 3–8.

  42. A. Sedghi, N. RiahiNoori (2013) J. Ceram. Proc. Res. 14(1):41-44.

    Google Scholar 

  43. F.Kh. Urakaev, T.A. Ketegenov, Y.M. Borzdov, I.V. Savchenko, V.S. Shevchenko, S.V. Stankus, N.F. Uvarov, and N.P. Pokhilenko: Acta Physica Polonica A, 2010, vol. 117(5), pp. 873-877.

    Google Scholar 

  44. P. Brito, L. Durães, and A. Portugal: Computational Thermal Sciences, 2012, vol. 4(2), pp. 137-149.

    Article  Google Scholar 

  45. Chlubny, L., Lis, J., Bućko, M.M., and Kata, D. 2011. Ceramic Engineering and Science Proceedings, 32(3), 161-168.

    Article  Google Scholar 

  46. T. Foley, A. Pacheco, J. Malchi, R. Yetter, and K. Higa: Propellants, Explosives, Pyrotechnics, 2007, vol. 32(6), pp. 431-434.

    Article  Google Scholar 

  47. D.M. Ikornikov, V.N. Sanin, and V.I. Yukhvid: Combustion, Explosion, and Shock Waves, 2011, vol. 47(6), pp. 697-702.

    Article  Google Scholar 

  48. S.Sh. Kazhikenova, O.A. Nurkenov, and B.N. Satbaev: Refractories and Industrial Ceramics, 2011, vol. 52(1), pp. 55-60.

    Article  Google Scholar 

  49. Y. Meir and E. Jerby: Combustion and Flame, 2012, vol. 159(7), pp. 2474-2479.

    Article  Google Scholar 

  50. S.K. Pillai, A. Hadjiafxenti, C.C. Doumanidis, T. Ando, and C. Rebholz: International Journal of Applied Ceramic Technology, 2012, vol. 9(1), pp. 206-213.

    Article  Google Scholar 

  51. R. Rosa, E. Colombini, P. Veronesi, G. Poli, and C. Leonelli: Journal of Materials Engineering and Performance, 2012, vol. 21(5), pp. 725-732.

    Article  Google Scholar 

  52. F.Kh. Urakaev, V.S. Shevchenko, A.P. Chupakhin, T.S. Yusupov, and V.V. Boldyrev: Journal of Mining Science, 2001, vol. 37(6), pp. 627-637.

    Article  Google Scholar 

  53. T.M. Klapötke, F.X. Steemann, and M. Suceska: Propellants, Explosives, Pyrotechnics, 2013, vol. 38(1), pp. 29-34.

    Article  Google Scholar 

  54. K. Kosanke, B.J. Kosanke, I. von Maltitz, B. Sturman, T. Shimizu, M.A. Wilson, N. Kubota, C. Jennings-White, and D. Chapman: Pyrotechnic Chemistry. Pyrotechnic Reference Series No. 4, Journal of Pyrotechnics, Inc., Whitewater, CO, 2004

  55. L.L. Wang, Z.A. Munir, and Y.M. Maximov: Journal of Materials Science, 1993, vol. 28(14), pp. 3693-3708.

    Article  Google Scholar 

  56. S. Pritchett, B. Mishra, J.J. Moore, D.L. Olson, and A.M. Murray: Light Metals, 1992, pp. 1287–94.

  57. F.Kh. Urakaev, L.Sh. Bazarov, V.S. Shevchenko, and V.D. Nartikoev: Metallurgy of Non-Ferrous & Rare Metals: Book of Abstracts of the 2 nd International Conference, ICCT SB RAS, Krasnoyarsk, 2003, 2-volume, vol. 1, pp. 105–07.

  58. W.A. Hart, O.F. Beumel, T.P. Whaley, and J.C. Bailar: The chemistry of lithium, sodium, potassium, rubidium, cesium and francium, Pergamon Texts in Inorganic Chemistry, vol. 13, Pergamon Press, Oxford, 1975, 529 p.

    Google Scholar 

  59. T.H. Okabe, D.R. Sadoway (1998) J. Mater. Res. 13(12):3372-3377.

    Article  Google Scholar 

  60. D.G. Mayilyan, S.K. Dolukhanyan, A.G. Aleksanyan (2012) Int. J. SHS 21(1):38-40.

    Google Scholar 

  61. N. Yasuda, T. Tsuchiya, N. Okinaka, and T. Akiyama: International Journal of Hydrogen Energy, 2012, vol. 37(12), pp. 9706-9715.

    Article  Google Scholar 

  62. A. Delgado and E. Shafirovich: Combustion and Flame, 2013, vol. 160(9), pp. 1876-1882.

    Article  Google Scholar 

  63. T.-A. Zhang, Z. Dou, H. Zhang, Z. Zhang, L. Niu, and J. He: TMS Annual Meeting, 2012, pp. 237–42.

  64. C.L. Yeh, J.Z. Lin, and H.J. Wang: Ceramics Int., 2012, vol. 38(7), pp. 5691-5697.

    Article  Google Scholar 

  65. S.L. Silyakov, V.N. Sanin, V.I. Yukhvid (2011) Int. J. SHS 20(3):176-180.

    Google Scholar 

  66. M.A. Dewan, G. Zhang, and O. Ostrovski: Metallurgical and Materials Transactions B, 2010, vol. 41(1), pp. 182-192.

    Article  Google Scholar 

  67. B. Paul, S.P. Chakraborty, J. Kishor, I.G. Sharma, and A.K. Suri: Metallurgical and Materials Transactions B, 2011, vol. 42(4), pp. 700-710.

    Article  Google Scholar 

  68. Z.A. Mansurov, I.M. Vongai, O.V. Chervyakova, T.A. Zavalishina, and S.H. Aknazarov: Key Engineering Materials, 2011, vol. 484(July), pp. 41-45.

    Article  Google Scholar 

  69. L. Chlubny, J. Lis (2013) Ceram. Trans., 240(1):79-85.

    Google Scholar 

  70. N. Obabkov, V. Gorkunov, R. Munter, and A. Beketov: Proceedings of the Estonian Academy of Sciences, 2008, vol. 57(1), pp. 54-60.

    Article  Google Scholar 

  71. M. Ding: Advanced Materials Research, 2012, vol. 581-582(1), pp. 1092-1095.

    Article  Google Scholar 

  72. V.A. Gorshkov, V.I. Yukhvid, P.A. Miloserdov, N.V. Sachkova, D.Yu. Kovalev (2011) Int. J. SHS 20(2):100-106.

    Google Scholar 

  73. K. Manukyan, S. Aydinyan, A. Aghajanyan, Y. Grigoryan, O. Niazyan, S. Kharatyan (2012) Int. J. Refract. Met. Hard Mater. 31(3):28-32.

    Article  Google Scholar 

  74. K. Manukyan, D. Davtyan, J. Bossert, and S. Kharatyan: Chemical Engineering Journal, 2011, vol. 168(2), pp. 925-930.

    Article  Google Scholar 

  75. A.I. Mikhailichenko, E.B. Mikhlin, and Yu.B. Patrikeev: Redkozemel’nye metally (Rare-Earth Metals), Metallurgiya, Moscow, 1987 (in Russian).

  76. A.R. Chourasia (2012) J. Appl. Phys. 112(2):024323.

    Article  Google Scholar 

  77. F.Kh. Urakaev, T.A. Ketegenov, E.I. Petrushin, Yu.P. Savintsev, O.A. Tyumentseva, A.P. Chupakhin, V.S. Shevchenko, T.S. Yusupov, V.V. Boldyrev: J. Min. Sci., 2003, 39(3):303-314.

    Article  Google Scholar 

  78. A.M. Akuov, M.Z. Tolymbekov, D.D. Izbembetov, M.S. Almagambetov: Russ. Metall., 2012, (12), pp. 1041–44.

  79. C. Luo, M. Liu, Y. Mao, T. Hu: Adv. Mater. Res., 2012, 560-561(27):100-106.

    Article  Google Scholar 

  80. X.-J. Zheng, K.-W. Peng, N.-W. Pu, H.-L. Ma, and H. Shi: Journal of Iron and Steel Research, 2012, vol. 24(9), pp. 6-9.

    Google Scholar 

  81. X.C. Mi, S. Goroshin, A.J. Higgins, R. Stowe, and S. Ringuette: Combustion and Flame, 2013, vol. 160(11), pp. 2608-2618.

    Article  Google Scholar 

  82. J.M. Córdoba, E. Chicardi, F.J. Gotor (2012) Chem. Eng. J. 192(1):58-66.

    Article  Google Scholar 

  83. G. Jian, S. Chowdhury, K. Sullivan, and M.R. Zachariah: Nanothermite reactions: Combustion and Flame, 2013, vol. 160(2), pp. 432-437.

    Google Scholar 

  84. C. Luo, M. Liu, Y. Mao, T. Hu, and L. He: Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2012, vol. 48(20), pp. 142-146.

    Article  Google Scholar 

  85. Jian, G., Piekiel, N.W., and Zachariah, M.R. 2012. Journal of Physical Chemistry C, 116(51), 26881-26887.

    Article  Google Scholar 

  86. K. Yasuda, K. Saegusa, and T.H. Okabe: Metallurgical and Materials Transactions B, 2011, vol. 42(1), pp. 37-49.

    Article  Google Scholar 

  87. K. Yasuda, K. Saegusa, and T.H. Okabe: High Temperature Materials and Processes, 2011, vol. 30(4), pp. 411-423.

    Google Scholar 

  88. F.Kh. Urakaev: Combust. Sci. Technol., 2013, 185(3):473-483.

    Article  Google Scholar 

  89. C.W. Won, H.H. Nersisyan, H.I. Won, D.Y. Jeon, and A.G. Kirakosyan: Combustion Science and Technology, 2011, vol. 183(9), pp. 915-927.

    Article  Google Scholar 

  90. V. Šepelák, M.J.N. Isfahani, M. Myndyk, M. Ghafari, A. Feldhoff, and K.D. Becker: Hyperfine Interactions, 2011, vol. 202(1-3), pp. 39-46.

    Article  Google Scholar 

  91. S. Goroshin, A. Miera, D.L. Frost, and J.H.S. Lee: Symposium (International) on Combustion, 1996, vol. 26(2), pp. 1883-1889.

    Article  Google Scholar 

  92. A. Bacciochini, M.I. Radulescu, M. Yandouzi, G. Maines, J.J. Lee, B. Jodoin: Surf. Coat. Technol., 2013, 226(15):60-67.

    Article  Google Scholar 

  93. C. Bartuli, R.W. Smith, and E. Shtessel: Ceramics Int., 1997, vol. 23(1), pp. 61-68.

    Article  Google Scholar 

  94. E.S. Collins, M.L. Pantoya, M.A. Daniels, D.J. Prentice, E.D. Steffler, and S.P. D’Arche: Energy and Fuels, 2012, vol. 26(3), pp. 1621-1628.

    Article  Google Scholar 

  95. S.W. Dean, J.K. Potter, R.Y. Yetter, T.J. Eden, V. Champagne, and M. Trexler: Intermetallics, 2013, vol. 43(December), pp. 121–130.

    Article  Google Scholar 

  96. H. Habu, M. Okada, M. Lto, K. Nozoe, T. Kawano, S. Matsumoto, and Y. Yoshida: Science and Technology of Energetic Materials, 2012, vol. 73(5−6), pp. 147-152.

    Google Scholar 

  97. Q.Y. Hou: Surf. Coat. Technol., 2013, 226(15):113-122.

    Article  Google Scholar 

  98. T. Talako, A. Ilyuschenko, and A. Letsko: KONA, 2009, (27), pp. 55–72.

  99. D. Yan, Y. Yang, Y. Dong, L. Wang, X. Chen, J. Zhang, and J. He: Materials Chemistry and Physics, 2012, vol. 133(1), pp. 190-196.

    Article  Google Scholar 

  100. Y. Yang, D.R. Yan, Y.C. Dong, X.G. Chen, L. Wang, J.X. Zhang, and J.N. He: Surface Engineering, 2012, vol. 28(5), pp. 333-337.

    Article  Google Scholar 

  101. A.P. Amosov, A.G. Makarenko, A.R. Samboruk, B.S. Seplyarskii, A.A. Samboruk, I.O. Gerasimov, A.V. Orlov, and V.V. Yatsenko: Russian Journal of Non-Ferrous Metals, 2013, vol. 54(3), pp. 267-273.

    Article  Google Scholar 

  102. Q. Hou, Z-C. Shi, R.-H. Fan, and L.-C. Ju: Key Engineering Materials, 2012, vol. 512−515(June), pp. 127-131.

    Article  Google Scholar 

  103. F.Kh. Urakaev (2011) Int. J. Min. Process., 101(1–4):37-41.

    Article  Google Scholar 

  104. H. Harada, M. Takaoka, K. Oshita, N. Takeda, and T. Matsumoto: Environmental Engineering Science, 2005, vol. 22(6), pp. 716-724.

    Article  Google Scholar 

  105. T. Atsumi, S. Take, H. Matsunuma, T. Kumakura (2012) J. Jpn. Soc. Powder Powder Metall. 59(1):3-7.

    Article  Google Scholar 

  106. J. Safarian, L. Kolbeinsen, M. Tangstad, and G. Tranell: Metallurgical and Materials Transactions B, 2009, vol. 40(6), pp. 929-939.

    Article  Google Scholar 

  107. H. Sun, M.Y. Lone, S. Ganguly, and O. Ostrovski: ISIJ International, 2010, vol. 50(5), pp. 639-646.

    Article  Google Scholar 

  108. K.-S. Wang, K.-L. Lin, and C.-H. Lee: Journal of Hazardous Materials, 2009, vol. 162(1), pp. 338-343.

    Article  Google Scholar 

  109. E.A. Levashov, I.P. Borovinskaya, A.S. Rogachev, M. Ohyanagi, S. Hosomi, M. Koizumi (1998) Int. J. SHS 7(1):103-118.

    Google Scholar 

  110. K. Tapsuan and S. Niyomwas: Advanced Materials Research, 2012, vol. 488−489(March), pp. 305-309.

    Article  Google Scholar 

  111. S.H. Kim, Y.J. Lee, T.H. Lee, H.H. Nersisyan, M.S. Kong, D.Y. Maeng, and J.H. Lee: Combustion and Flame, 2013, vol. 160(11), pp. 2631-2637.

    Article  Google Scholar 

  112. S. Wang, W. Xin, L. Qu, and Y. Wu: Advanced Materials Research, 2013, vol. 621(December), pp. 211-215.

    Article  Google Scholar 

  113. Ö. Okur, M. Alkan, and O. Yücel: TMS Annual Meeting, 2013, pp. 171–75.

  114. C.-L. Yeh, and Y.-S. Huang: High Temperature Material Processes, 2012, vol. 16(1), pp. 57-69.

    Article  Google Scholar 

  115. C.L. Yeh, and J.Z. Lin: Intermetallics, 2013, vol. 33(February), pp. 126-133.

    Article  Google Scholar 

  116. V.V. Gostishchev, K. Ri, S.N. Khimukhin, E.K. Ri, and V.G. Komkov: Russian Journal of Non-Ferrous Metals, 2010, vol. 51(6), pp. 490-493.

    Article  Google Scholar 

  117. S. Niyomwas: Adv. Mater. Res. 2013, 664(February):449-453.

    Article  Google Scholar 

  118. Y. Wang, C. Yang, X.L. Song, W. Jiang, G.D. Deng, and F.S. Li: Applied Mechanics and Materials, 2013d, vol. 320(May), pp. 383-388.

    Google Scholar 

  119. G. Cao, G. Concas, A. Corrias, R. Orru, A. Corrias, G. Paschina, B. Simoncini, and G. Spano: Zeitschrift für Naturforschung A, 1997, vol. 52(6−7), pp. 539-549.

    Google Scholar 

  120. W. Gruner, S. Stolle, L.-M. Berger, and K. Wetzig: International Journal of Refractory Metals and Hard Materials, 1999, vol. 17(1), pp. 227-234.

    Article  Google Scholar 

  121. T.A. Ketegenov, F.Kh. Urakaev (2010) Int. J. SHS 19(2):135-142.

    Google Scholar 

  122. T. Mori, J. Yang, and M. Kuwabara: ISIJ Int., 2007, vol. 47(10), pp. 1387-1393.

    Article  Google Scholar 

  123. J. Oudar (1980) Mater. Sci. Eng. 42(3):101-109.

    Article  Google Scholar 

  124. F.Kh. Urakaev, V.S. Shevchenko (2004) J. Mater. Sci. 39(16-17):5507-5509.

    Article  Google Scholar 

  125. E.K. Yakubailik, A.G. Zvegintsev, V.I. Volkov, V.T. D’yachenko, A.A. Yatsenko, L.S. Stepanenko, V.N. Ogarkov (1994) J. Min. Sci. 30(3):311–317.

    Article  Google Scholar 

  126. M.I. Gasik and O.N. Sezonenko: Steel in Translation, 2008, vol. 38(5), pp. 391-401.

    Article  Google Scholar 

  127. Sh.V. Gedevanishvili, V.I. Yukhvid, and G.Sh. Oniashvili: Journal of Engineering Physics and Thermophysics, 1993, vol. 65(5), pp. 1134-1137.

    Article  Google Scholar 

  128. V.M. Katunin, Yu.M. Bogutskii, T.G. Gabdullin, and I.V. Liskovich: Metallurgist, 1989, vol. 32(11−12), pp. 354-356.

    Google Scholar 

  129. R. Kononov, O. Ostrovski, and S. Ganguly: ISIJ International, 2009, vol. 49(8), pp. 1099-1122.

    Article  Google Scholar 

  130. B. Sorensen, S. Gaal, E. Ringdalen, M. Tangstad, R. Kononov, and O. Ostrovski: Int. Journal of Mineral Processing, 2010, vol. 94(3-4), pp. 101-110.

  131. A. Atasoy and F.R. Sale: Diffusion and Defect Data Pt. B: Solid State Phenomena, 2009, vol. 147-149(January), pp. 752-757.

    Article  Google Scholar 

  132. D. Chakraborty, S. Ranganathan, and S.N. Sinha: Metallurgical and Materials Transactions B, 2005, vol. 36(4), pp. 437-444.

    Article  Google Scholar 

  133. L. Fazeli and M. Kalantar: Journal of Alloys and Compounds, 2013, vol. 552(5 March), pp. 511-517.

  134. D. Osso, A. Mocelling, G.L.E. Caer, A. Pianelli (1993) J. Phys., 3(7-2):1311-1316.

    Google Scholar 

  135. S. Ranganathan, K.M. Godiwalla, and D. Chakraborty: Transactions of the Institutions of Mining and Metallurgy C, 2011, vol. 120(2), pp. 71-78.

    Google Scholar 

  136. A. Chrysanthou, D. Macfarlane, and O.S. Chinyamakobvu: Journal of Alloys and Compounds, 1994, vol. 206(1), pp. 77-81.

    Article  Google Scholar 

  137. J. Eckert, K. Reichert, Ch., Schnitter, and H. Seyeda: Niobium Sci. Technol., 2001, pp. 67–87.

  138. V. Gorkunov and R. Munter: Proceedings of the Estonian Academy of Sciences: Chemistry, 2007, vol. 56(3), pp. 142-156.

    Google Scholar 

  139. J.B.F. Neto, C. Takano, and F.B. Neto: TMS Annual Meeting, 2010, vol. 1, pp. 535–42.

  140. C.L. Yeh and Y.S. Huang: Journal of Alloys and Compounds, 2011, vol. 509(21), pp. 6302–6306.

    Article  Google Scholar 

  141. G. Cao, S. Doppiu, M. Monagheddu, R. Orru, M. Sannia, and G. Cocco: Industrial Engineering Chemistry Research, 1999, vol. 38(9), pp. 3218-3224.

    Article  Google Scholar 

  142. Y. Miyamoto, S. Kanehira, K. Hirota, O. Yamaguchi (2000) Int. J. SHS, 9(3):357-362.

    Google Scholar 

  143. Y.-B. Cheng, M.R. Terner, W.W. Chen, P.L. Wang (2004) Key Eng. Mater., 264-268(2):781-786.

    Article  Google Scholar 

  144. V.A. Gorshkov (2011) Int. J. SHS, 20(4):273-276.

    Google Scholar 

  145. W. Huang, G. Wu, F. Meng, and F. Ye: Advanced Materials Research, 2013, vol. 624(December), pp. 103-106.

    Google Scholar 

  146. A.V. Kostanyan, H.H. Nersisyan, S.L. Kharatyan, R. Orru, G. Cao (2000) Int. J. SHS, 9(4):387-402.

    Google Scholar 

  147. K.C. Patil: Advanced ceramics: Bull. Mater. Sci., 1993, vol. 16(6), pp. 533-541.

    Google Scholar 

  148. J.A. Rodrigues, V.C. Pandolfelli, W.J. BottaF., R. Tomasi, B. Derby, R. Stevens, R.J. Brook: J. Mater. Sci. Lett., 1991, vol. 10(14), pp. 819-823.

    Article  Google Scholar 

  149. Z.I. Zaki and A.A. Francis: Combustion Science and Technology, 2013, vol. 185(6), pp. 943-952.

    Article  Google Scholar 

  150. J. Zhu and R. Pan: Ceramics International, 2013, vol. 39(5), pp. 5609-5613.

    Article  Google Scholar 

  151. M. Song, M. Ran, and Y. Long: Journal of Alloys and Compounds, 2013, vol. 564(July), pp. 20-26.

    Article  Google Scholar 

  152. A. Huczko, M. Kurcz, A. Dąbrowska, P. Baranowski, A. Bhattarai, S. Gierlotka (2014) J. Cryst. Growth 401(September):469-473.

    Article  Google Scholar 

  153. J. Wang, Y. Gu, Z. Li, W. Wang, and Z. Fu: Materials Research Bulletin, 2013a, vol. 48(6), pp. 2018-2022.

    Article  Google Scholar 

  154. L. Wang, D. Yan, Y. Dong, J. Zhang, and X. Chen: Ceramics International, 2013c, vol. 39(3), pp. 2437-2442.

    Article  Google Scholar 

  155. W. Xi, H. Wang, J. Li, C. Shi: Mater. Sci. Eng. A, 2012, 541(April):166-171.

    Article  Google Scholar 

  156. S.M. Fomenko, E.E. Dilmukhambetov, Z.A. Mansurov, Z. Korkembai, A.F. Reshetnyak (2013) Adv. Mater. Res. 602-604(December):957-1001.

    Google Scholar 

  157. O.G. Gromov, E.L. Tikhomirova, E.P. Lokshin, and V.T. Kalinnikov: Russian Journal of Applied Chemistry, 2012, vol. 85(1), pp. 16-19.

    Article  Google Scholar 

  158. Z. Mansurov, N. Mofa, and B. Sadykov: Advanced Materials Research, 2013, vol. 699(May), pp. 566-571.

    Article  Google Scholar 

  159. R.V. Minin, V.I. Itin, E.P. Naiden, and V.A. Zhuravlev: Russian Journal of Non-Ferrous Metals, 2012, vol. 53(5), pp. 410-414.

    Article  Google Scholar 

  160. T.H. Song, H.L. Lee, C.N. Pai, and T. Mitsuhashi: Journal of Materials Science Letters, 1995, vol. 14(23), pp. 1715-1717.

    Article  Google Scholar 

  161. F.Kh. Urakaev, E.S. Orynbekov, Sh.N. Nazarkulova, O.A. Tyumentseva, A.P. Chupakhin, V.S. Shevchenko, T.S. Yusupov, and T.A. Ketegenov: Chemistry for Sustainable Development, 2005, vol. 13(2), pp. 313-319.

    Google Scholar 

  162. Yu.V. Vorobiev, J. González-Hernández, S. Jimenez-Sándoval, S.V. Kozitskii, R.V. Zakharchenko, and V.N. Zakharchenko: Inorganic Materials, 1999, vol. 35(1), pp. 12-16.

    Google Scholar 

  163. Y.-Q. Wang, H. Zhou, Y.-J. Shi, B.-R. Feng: Int. J. Min. Metall. Mater. 2012, 19(5):409-420.

    Article  Google Scholar 

  164. W. Yan: Advanced Materials Research, 2013, vol. 690-693(May), pp. 334-337.

    Google Scholar 

  165. Ö.C. Yilmaz, M. Alkan, and O. Yuċėl: TMS Annual Meeting, 2013, pp. 335–40.

  166. Yu.Yu. Zhyhuts, and V.V. Shyrokov: Mater. Sci., 2005, vol. 41(5), pp. 666-672.

    Article  Google Scholar 

  167. M. Comet, B. Siegert, V. Pichot, and D. Spitzer: Journal of Thermal Analysis and Calorimetry, 2013, vol. 111(1), pp. 431-436.

    Article  Google Scholar 

  168. D.G. Piercey and T.M. Klapötke: Central European Journal of Energetic Materials, 2010, vol. 7(2), pp. 115-129.

    Google Scholar 

  169. M.-S. Shin, J.-K. Kim, J.-W. Kim, C.A.M. Moraes, H.-S. Kim, and K.-K. Koo: Journal of Industrial and Engineering Chemistry, 2012, vol. 18(5), pp. 1768-1773.

    Article  Google Scholar 

  170. S.C. Stacy and M.L. Pantoya: International Journal of Energetic Materials and Chemical Propulsion, 2012, vol. 11(4), pp. 293-298.

    Google Scholar 

  171. Y. Yang, P.-P. Wang, Z.-C. Zhang, H.-L. Liu, J. Zhang, J. Zhuang, X. Wang: Sci. Rep., 2013 3(April):1694.

    Google Scholar 

  172. Y. Yang, D. Xu, and K. Zhang: J. Mater. Sci., 2012, vol. 47(3), pp. 1296-1305.

    Article  Google Scholar 

  173. A. Cincotti, R. Orrù, M. Pisu, and G. Cao: Industrial and Engineering Chemistry Research, 2001, vol. 40(23), pp. 5291-5299.

    Article  Google Scholar 

  174. A.N. Avramchik, O.K. Lepakova, Yu.S. Naiborodenko, O.A. Shkoda, V.D. Kitler, V.G. Balakhonov, V.A. Matyukha, B.R. Safin, A.N. Katushonok (2001) Int. J. SHS, 10(1):83-90.

    Google Scholar 

  175. T.V. Barinova, I.P. Borovinskaya, V.I. Ratnikov, T.I. Ignat’eva, and A.F. Belikova: Radiochemistry, 2013, vol. 55(6), pp 629-633.

    Article  Google Scholar 

  176. X. Lu, F. Dong, M. Chen, S. Su, X. Wang, Y. Wu (2013) Energy Proc., 39(September):365-374.

    Article  Google Scholar 

  177. X. Mao, Z. Qin, X. Yuan, C. Wang, X. Cai, W. Zhao, K. Zhao, P. Yang, and X. Fan: Journal of Nuclear Materials, 2013, vol. 443(1−3), pp. 428-431.

    Article  Google Scholar 

  178. S.-J. Su, Y. Ding, and X.-R. Lu: Applied Mechanics and Materials, 2014, vol. 563(May), pp. 112-118.

    Article  Google Scholar 

  179. D.E. Andreev, V.N. Sanin, N.V. Sachkova, V.I. Yukhvid (2011) Int. J. SHS, 20(1):27-32.

    Google Scholar 

  180. R. Mahmoodian, R.G. Rahbari, M. Hamdi, M.A. Hassan, and M. Sparham: JOM, 2013b, vol. 65(1), pp. 80-85.

    Article  Google Scholar 

  181. R. Mahmoodian, R.G. Rahbari, M. Hamdi, and M. Sparham: High Temperature Material Processes, 2012, vol. 16(1), pp. 15-23.

    Article  Google Scholar 

  182. V.N. Sanin, D.E. Andreev, and V.I. Yukhvid: Russian Journal of Non-Ferrous Metals, 2013, vol. 54(3), pp. 274-279.

    Article  Google Scholar 

  183. F. Álvarez, A. Delgado, J. Frias, M. Rubio, C. White, A.K. NarayanaSwamy, E. Shafirovich (2013) J. Thermophys. Heat Transfer, 27(3):576–83.

    Article  Google Scholar 

  184. G.I. Ksandopulo (2011) Int. J. SHS, 20(4):220-223.

    Google Scholar 

  185. J. Lee, M.T. Le, and H.S. Chung: Materials Transactions, 2007, vol. 48(11), pp. 2960-2963.

    Article  Google Scholar 

  186. A.M. Locci, R. Licheri, R. Orrù, A. Cincotti, G. Cao, J. De Wilde, F. Lemoisson, L. Froyen, I.A. Beloki, A.E. Sytschev, A.S. Rogachev, and D.J. Jarvis: AIChE Journal, 2006, vol. 52(11), pp. 3744-3761.

    Article  Google Scholar 

  187. R. Mahmoodian, M.A. Hassan, R.G. Rahbari, R. Yahya, and M. Hamdi: Composites Part B: Engineering, 2013, vol. 50(July), pp. 187-192.

    Article  Google Scholar 

  188. V. Sanin, D. Andreev, D. Ikornikov, and V. Yukhvid: Acta Physica Polonica A, 2011, vol. 120(2), pp. 331-335.

    Google Scholar 

  189. Y. Xu, Z. Yang, Z. Han, G. Liu, J. Li (2014) Ceram. Int., 40(1A):1037-1043.

    Article  Google Scholar 

  190. F. Álvarez, C. White, A.K. NarayanaSwamy, E. Shafirovich: Proc. Combust. Instit., 2013, 34(2):2245-2252.

    Article  Google Scholar 

  191. G. Corrias, R. Licheri, R. Orrù, G. Cao (2013) Chem. Eng. Trans., 32(June):697-702.

    Google Scholar 

  192. G. Corrias, R. Licheri, R. Orrù, G. Cao (2012) Acta Astronaut. 70(January):69-76.

    Article  Google Scholar 

  193. J.J. Moore and H.J. Feng: Progress Materials Sci., 1995, vol. 39(4−5), pp. 275-316.

    Article  Google Scholar 

  194. A. Makino: Progress in Energy and Combustion Science, 2001, vol. 27(1), pp. 1-74.

    Article  Google Scholar 

  195. S.H. Fischer and M.C. Grubelich: SAND–98-1176C (Supercedes report DE98005512), 1998-06-01, United States. doi:10.2172/658208

  196. S. Knapp, V. Weiser, S. Kelzenberg, and N. Eisenreich: Propellants Explosives Pyrotechnics, 2014, vol. 39(3), p. 423-433.

    Article  Google Scholar 

  197. V.A. Podergin: Metallotermicheskie Sistemy (Metallothermic Systems), Metallurgiya, Moscow, 1992 (in Russian).

  198. I.P. Sokolov and N.L. Ponomarev: Vvedenie v metallotermiyu (Introduction into Metallothermy), Metallurgiya, Moscow, 1990 (in Russian).

  199. J.T. Abrahamson and M.S. Strano: Journal of Physical Chemistry Letters, 2010, vol. 1(24), pp. 3514-3519.

    Article  Google Scholar 

  200. V. Jordan and S.Kotenev: Commun. Comput. Inform. Sci. 2014, 487:162-167.

    Article  Google Scholar 

  201. O.B. Kovalev and V.V.Belyaev: Combustion, Explosion and Shock Waves, 2013, vol. 49(5), pp. 563-574.

    Article  Google Scholar 

  202. C.-C. Zhu, J. Zhu, H. Wu, and H. Lin: Rare Metals, 2014, vol. 34(2), pp. 107-110.

    Article  Google Scholar 

  203. Y.X. Li, P.K. Bai, B. Liu, and J.H. Wang: Lasers in Engineering, 2014, vol. 27(1−2), pp. 31-41.

    Article  Google Scholar 

  204. I.P. Sokolov: Termodinamicheskii analiz metallotermicheskikh reaktsii (Thermodynamic Analysis of Metallothermic Reactions), MGVMI, Moscow-Lyubertsy, 2009, 64 p.

    Google Scholar 

  205. T. Thomas and C.R. Bowen: J. Alloys Compd, 2014, 602(July):72-77.

    Article  Google Scholar 

  206. R. Pampuch: Solid State Ion., 1997, 101–103 (November):899-907.

    Article  Google Scholar 

  207. G.B. Yu, F.H. Tao, S.H. Wang, L.J. Cao, and Q. Ma: Advanced Materials Research, 2014, vol. 905(April), pp. 109-112.

    Article  Google Scholar 

  208. P. Novák, A. Michalcová, I. Marek, M. Mudrová, K. Saksl, J. Bednarčík, P. Zikmund, and D. Vojtěch: Intermetallics, 2013, vol. 32(January), pp. 127-136.

    Article  Google Scholar 

  209. Y.S. Pogozhev, A.Y. Potanin, E.A. Levashov, A.V. Novikov, T.A. Sviridova, and N.A. Kochetov: Russian Journal of Non-Ferrous Metals. 2015, vol. 55(6), pp. 632-638.

    Article  Google Scholar 

  210. E.A. Levashov, Y.S. Pogozhev, A.Y. Potanin, N.A. Kochetov, D.Y. Kovalev, N.V. Shvyndina, and T.A. Sviridova: Ceramics International, 2014, vol. 40(5), pp. 6541-6552.

    Article  Google Scholar 

  211. O.G. Cervantes, J.D. Kuntz, A.E. Gash, and Z.A. Munir: Combustion and Flame, 2011, vol. 158(1), pp. 117-122.

    Article  Google Scholar 

  212. G.F. Tavadze and A.S. Shteinberg: Production of Advanced Materials by Methods of Self-Propagating High-Temperature Synthesis, Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2013.

  213. T. Chanadee, J. Wannasin, and S. Niyomwas: Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 2014, vol. 122(1426), pp. 496-501.

    Article  Google Scholar 

  214. T. Chanadee, J. Wannasin, and S. Niyomwas: Advanced Materials Research, 2013, 748:32-35.

    Article  Google Scholar 

  215. J.T. Abrahamson, B. Sempere, M.P. Walsh, J.M. Forman, F. Şen, S. Şen, S.G. Mahajan, G.L.C. Paulus, Q.H. Wang, W. Choi, and M.S. Strano: ACS Nano, 2013, vol. 7(8), pp. 6533-6544.

    Article  Google Scholar 

  216. S.T. Aruna and A.S. Mukasyan: Current Opinion in Solid State and Materials Science, 2008, vol. 12(3−4), pp. 44-50.

    Article  Google Scholar 

  217. K.K. Kuo, G.A. Risha, B.J. Evans, and E. Boyer: MRS Proceedings, 2003, vol. 800, AA1.1. doi:10.1557/PROC-800-AA1.1

    Article  Google Scholar 

  218. R.A. Williams, M. Schoenitz, and E.L. Dreizin: Combustion Science and Technology, 2014, vol. 186(1), pp 47-67.

    Article  Google Scholar 

  219. R.A. Williams, M. Schoenitz, A. Ermoline, E.L. Dreizin: Thermochim. Acta, 2014, 594(October):1-10.

    Article  Google Scholar 

  220. V.V. Gubernov, V.N. Kurdyumov, and A.V. Kolobov: Combustion and Flame, 2014, vol. 161(8), pp. 2209-2214.

    Article  Google Scholar 

  221. J.L.García-Jacomino, G. González, R. Quintana-Puchol, M. Alvarez-Luna, A. Monsalve, and R. Villalba: Acta Microscopica, 2014, vol. 23(2), pp. 128-135.

    Google Scholar 

  222. A. Makino: Proceedings of the Combustion Institute, 2007, vol. 31(2), pp. 1813-1820.

    Article  Google Scholar 

  223. W.J.F. Botta, V.C. Pandolfelli, J.A. Rodrigues, R. Tomasi, R. Stevens, B. Derby, and R.J. Brook: Journal: Journal of the European Ceramic Society, 1992, vol. 9(1), pp. 67-73.

    Article  Google Scholar 

  224. V. Sanin, D. Andreev, D. Ikornikov, V. Yukhvid: Open Journal of Metal, 2013, 3(2), pp. 12-24.

    Article  Google Scholar 

  225. Y.-N. Cao, S. Du, J.-K. Wang, H. Zhang, F.-L. Li, L.-L. Lu, S.-W. Zhang, and X.-G. Deng: Journal of Sol-Gel Science and Technology, 2014, vol. 72(1), pp. 130-136.

    Article  Google Scholar 

  226. A. Shteinberg: Journal of Thermal Analysis and Calorimetry, 2011, vol. 106(1), pp. 39-46.

    Article  Google Scholar 

  227. A. Shteinberg: Fast Reactions in Energetic Materials: High-temperature Decomposition of Rocket Propellants and Explosives, Springer Science & Business Media, Heidelberg, 2008.

  228. N.A. Gokcen and R.G. Reddy: Thermodynamics (second edition), Plenum Press, New York, 1996, 400 p.

    Book  Google Scholar 

  229. S. Niyomwas: in: Properties and Applications of Silicon Carbide, R. Gerhardt, ed., InTech, Vienna, 2011, Chap. 18, pp. 411–25.

  230. T. Wang, R.Y. Liu, M.L. Zhu, and J.S. Zhang: Journal of Thermal Analysis and Calorimetry, 2002, vol. 70(2), pp. 507-519.

    Article  Google Scholar 

  231. W. Garrett: Control of Self-propagating High-temperature Synthesis Derived Aluminum-Titanium Carbide Metal Matrix Composites, School of Mines, Colorado, 2012.

  232. J. Nuechterlein: PhD thesis, Colorado School of Mines, Golden, December 2013.

  233. K. Kobayashi and T. Fujinuma: EP 0509447 A2, 1992, 21 October, Bulletin 92/43.

  234. E.F. Neto and R.H.G.A. Kiminami: Advanced Powder Technology, 2014, vol. 25(2), pp. 654-658.

    Article  Google Scholar 

  235. N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González: Chem. Eng. J., 2015, 264(March):899-935.

    Article  Google Scholar 

  236. L. Mariappan, T.S. Kannan, and A.M. Umarji: Materials Chemistry and Physics, 2002, vol. 75(1−3), pp. 284-290.

    Article  Google Scholar 

  237. H. Liu, F. Meng, Q. Li, Z. Huang, S. Luo, L. Yin, M. Fang, Y.-G. Liu, and X. Wu: CrystEngComm, 2015, vol. 17(7), pp. 1591-1596.

    Article  Google Scholar 

  238. T. Wang, Y. Xu, Z. Huang, M. Fang, Y. Liu, X. Wu, L. Yin, B. Liu, and X. Hu: Key Engineering Materials, 2014, vol. 602-603, pp. 238-241.

    Article  Google Scholar 

  239. L. Yin, Y. Xu, Z. Huang, Y.-G. Liu, M. Fang, and B. Liu: Powder Technology, 2013, vol. 246(September), pp. 677-681.

    Article  Google Scholar 

  240. Y. Xu, Y. Liu, Z. Huang, M. Fang, X. Hu, L. Yin, and J. Huang: Materials Research Bulletin, 2013, vol. 48(1), pp. 7-11.

    Article  Google Scholar 

  241. G. Xanthopoulou and G. Vekinis: Adv. Environ. Res., 2001, 5:117-128.

    Article  Google Scholar 

  242. K. Nuilek, N. Memongkol, and S. Niyomwas: Songklanakarin Journal of Science and Technology, 2008, 30(2), pp. 239-242.

    Google Scholar 

  243. S. Niyomwas: Journal of Metals, Materials and Minerals, 2009, vol. 19(2), pp. 21-25.

    Google Scholar 

  244. S. Niyomwas: Advanced Materials Research, 2012, vol. 488-489, pp. 607-611.

    Google Scholar 

  245. S. Niyomwas: Advanced Materials Research. 2012, vol. 488-489, pp. 490-494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farit Kh. Urakaev.

Additional information

Manuscript submitted November 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urakaev, F.K., Akmalaev, K.A., Orynbekov, E.S. et al. The Use of Combustion Reactions for Processing Mineral Raw Materials: Metallothermy and Self-propagating High-temperature Synthesis (Review). Metall Mater Trans B 47, 58–66 (2016). https://doi.org/10.1007/s11663-015-0455-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0455-2

Keywords

Navigation