Skip to main content
Log in

Interface Formation During Fusion™ Casting of AA3003/AA4045 Aluminum Alloy Ingots

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fusion™ casting is a unique Direct Chill continuous casting process whereby two different alloys can be cast simultaneously, producing a laminated ingot for rolling into clad sheet metal such as AA3003/AA4045 brazing sheet. Better understanding of the wetting and interface formation process during Fusion™ casting is required to further improve process yields and also explore use of other alloy systems for new applications. In this research, AA3003-core/AA4045-clad ingots were cast using a well-instrumented lab-scale Fusion™ casting system. As-cast Fusion™ interfaces were examined metallurgically and by mechanical testing. Computational fluid dynamic analyses of the FusionTM casts were also performed. It was shown that the liquid AA4045-clad alloy was able to successfully wet and create an oxide-free, metallurgical, and mechanically sound interface with the lightly oxidized AA3003-core shell material. Based on the results of this study, it is proposed that the bond formation process at the alloys interface during casting is a result of discrete penetration of AA4045 liquid at defects in the preexisting AA3003 oxide, dissolution of underlying AA3003 by liquid AA4045, and subsequent bridging between penetration sites. Spot exudation on the AA3003 chill cast surface due to remelting and inverse segregation may also improve the wetting and bonding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. M.D. Anderson, K.T. Kubo, T.F. Bischoff, W.J. Fenton, E.W. Reeves, B. Spendlove. and R.B. Wagstaff, US Patent No. 20050011630 A1, January 20, 2005.

  2. T.F. Bischoff.,R. Womack, W.J. Fenton, R.B. Wagstaff and L.G. Hudson, U.S. Patent No. 8336603, December 25, 2012.

  3. R.G. Wagstaff, T.F. Bischoff, and D. Sinden, 2009, Mater. Sci. Forum, vol. 630, pp. 175-178.

    Article  Google Scholar 

  4. A.R. Baserinia, E.J.F.R Caron, M.A. Wells, D.C. Weckman, S. Barker, and M. Gallerneault, 2013, Metall. Mater. Trans. B, vol. 44B, no. 4, 2013, pp. 1017-1029.

    Article  Google Scholar 

  5. E.J.F.R. Caron, R.E. Ortega Pelayo, A.R. Baserinia, M.A. Wells, D.C. Weckman, S. Barker, and M. Gallerneault, 2014, Metall. Mater. Trans. B, vol. 45B, no. 3, pp. 975-987.

    Article  Google Scholar 

  6. C.M. Craighead, E.W. Cawthorne, and R.I. Jaffee, 1955, J. Met., vol. 7, pp. 81-87.

    Google Scholar 

  7. R.B. Wagstaff, D.J. Lloyd and T.F. Bischoff, Materials Sci. Forum, vols. 519-521, 2006, pp. 1809-1814.

    Article  Google Scholar 

  8. M. Di Ciano: PhD thesis, University of Waterloo, Waterloo, ON, Canada, 2015.

  9. H. Ng: MASc thesis, University of Waterloo, Waterloo, ON, Canada, 2010.

  10. R.E. Ortega Pelayo: MASc thesis, University of Waterloo, Waterloo, ON, Canada, 2012.

  11. C.A. Aliravci and M.Ö. Pekgüleryüz, 1998, CALPHAD Alloy Thermodyn., Proc. Symp., vol. 22, no. 2, pp. 147-155.

    Google Scholar 

  12. ASTM Standard B557-10, 2010, ASTM International.

  13. ASTM Standard E8/E8M-11, 2011, ASTM International.

  14. R.A. Waldo, M.C. Militello, S.W. Gaarenstroom, 1993, Surf. Interface Anal., vol. 20, no. 2, pp. 111–114.

    Article  Google Scholar 

  15. D.C. Weckman and P. Niessen, 1984, Met. Forum, vol. 7, pp. 98-114.

    Google Scholar 

  16. D.C. Weckman and P. Niessen, 1984, Met. Tech., vol. 11, pp. 497-503.

    Article  Google Scholar 

  17. ANSYS®; CFX®; Version 12.1, ANSYS Europe Ltd., 1996-2009.

  18. A.R. Baserinia, H. Ng, D.C. Weckman, M.A. Wells, S. Barker, M. Gallerneault, 2012, Metall. Mater. Trans. B, vol. 43B, no. 4, pp. 887-901.

    Article  Google Scholar 

  19. E.F. Emley, 1976, Int. Metal. Rev., vol. 21, pp. 75-115.

    Google Scholar 

  20. L. Bäckerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminium Alloys, Vol. 1: Wrought Alloys, SkanAluminium, Olso, Sweden, 1986.

  21. M. Morishita, K. Nakayama, K. Tokuda, and K. Yoshikawa, Light Metals 2000, Peterson R.D. (Ed.), The Minerals, Metals & Materials Society, Nashville, Tennessee, 2000, pp. 657–62.

  22. J.R. Terrill, C.N. Cochran, and J.J. Stokes, 1971, Weld. J. (N.Y.), vol. 50, no. 12, pp 833-839.

    Google Scholar 

  23. O.A. Gali, A.R. Riahi, and A.T. Alpas, 2013, Wear, vol. 302, no. 1, 2013, pp. 1257-1267.

    Article  Google Scholar 

  24. J.L. Davis and P.F. Mendez: Light Metals 2008, DeYoung, D.H. (Ed.), The Minerals, Metals & Materials Society, New Orleans, Louisiana, 2008, pp. 733–48.

  25. A.J. Wall and D.R. Milner: 1961–1962, J. Inst. Met., vol. 90, pp. 394–402.

  26. Chase, M.W. Jr.: “NIST-JANAF Thermochemical Tables”, Fourth Edition, Journal of Physical and Chemical Reference Data, Monograph 9, 1998.

  27. R.N. Lumley, T.B. Sercombe, and G.M. Schaffer, 1999, Metall. Mater. Trans. A, vol. 30, no. 2, pp. 457-463.

    Article  Google Scholar 

  28. O. Ohashi and K. Sasabe, 1990, Weld. Int., vol. 4, no. 10, pp. 775-780.

    Article  Google Scholar 

  29. A.D. McLeod and C.M. Gabryel, 1992, Metall. Mater. Trans. A, vol. 23A, no. 4, pp. 1279-1283.

    Article  Google Scholar 

  30. E. Hajjari, M. Divandari, S.H. Razavi, S.M. Emami, T. Homma, and S. Kamado, 2011, J. Mater. Sci., vol. 46, no. 20, pp. 6491-6499.

    Article  Google Scholar 

  31. J.M. Cohen, J.E. Castle J. E., and M.B. Waldron, 1981, Met. Sci., vol. 15, no.10, pp. 455-462.

    Article  Google Scholar 

  32. B. Dutta and M. Rettenmayr, 2000, Metall. Mater. Trans. A, vol. 31A, pp. 2713-2720.

    Article  Google Scholar 

  33. L. Yin, B.T. Murray, and T.J. Singler, 2006, Acta Mater., vol. 54, pp. 3561-3574.

    Article  Google Scholar 

  34. D.P. Sekulic, P.K. Galenko, M.D. Krivilyov, L. Walker, and F. Gao, 2005, Int. J. Heat Mass Transfer, vol. 48, no. 12, pp. 2372-2384.

    Article  Google Scholar 

  35. F.I. Saunders and R.H. Wagoner: Simulation of Materials Processing: Theory, Methods, and Applications, pp. 157–64, 1995.

  36. F.I. Saunders and R.H. Wagoner, 1996, Metall. Mater. Trans. A, vol. 27A, pp. 2605-2616.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Simon Barker, Mark Gallerneault, Paul Nolan, Don Doutre at Novelis Global Technologies Labs in Kingston, ON, Canada and Kennesaw, Georgia, USA for their encouragement and support throughout this study. We also thank Rosa Ortega Pelayo, Amir Baserinia, and the technical staff at the University of Waterloo, Department of Mechanical and Mechatronics Engineering, for their generous contributions to this work. Funding for this study was provided by Novelis Inc. and the National Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Di Ciano.

Additional information

Manuscript submitted July 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Ciano, M., Caron, E.J.F.R., Weckman, D.C. et al. Interface Formation During Fusion™ Casting of AA3003/AA4045 Aluminum Alloy Ingots. Metall Mater Trans B 46, 2674–2691 (2015). https://doi.org/10.1007/s11663-015-0432-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0432-9

Keywords

Navigation