Skip to main content
Log in

Development of Instant Interface Temperature at Time τ = 0+ of Low Melting Temperature Cylindrical Solid Additive-Bath System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model in integral format is devised for the development of instant temperature at the interface between a low melting temperature solid cylindrical additive and the freezing layer of the bath material around the additive immediately after immersion of the additive in the bath. It indicates that this temperature is function of the phase change parameters, the Stefan number, S ta of the additive, and S tb of the bath material, the thermophysical property-ratio, γ and the melting temperature ratio, θ ab of the additive-bath system and gives a close form expression for the instant interface temperature, θ e. For given θ ab < 1 and the Stefan number, S ta, of the additive decreasing the Stefan number, S tb of the bath material (∞ ≥ S tb ≥ 0) or increasing γ (0 ≤ γ ≤ ∞) permits θ e to increase from the initial temperature of the additive to the freezing temperature of the bath material. θ e also gets increased by increasing any or both of S tb and θ ab. When the additive gets only heated after its immersion in the bath, the model of the present problem becomes exactly the same that was investigated recently validating the present problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B i :

Biot number, hr 0/K a

B im :

Modified Biot number, (hr 0/K a) × (K a C a/K b C b)

C :

Heat capacity (ρC p) (J m−3 K−1)

C p :

Specific heat (J kg−1 K−1)

C r :

Heat capacity ratio, C b/C a

h :

Heat transfer coefficient (Wm−2 K−1)

K :

Thermal conductivity (Wm−1 K−1)

L :

Latent heat of fusion (J kg−1)

r :

Radius (m)

R ah :

Non-dimensional radius in the heat penetration region of the additive, (r ah/r a)

R ai :

Non-dimensional radius of the heat penetration front in the additive at any time, (r ai/r a)

R bf :

Non-dimensional radius within the frozen layer region, (C b r bf/C a r a)

R bm :

Non-dimensional radius of the frozen layer front at anytime, (C b r bm/C a r a)

S ta :

Stefen number of the additive, C a(T am − T ai)/L a ρ a

S tb :

Stefen number of the bath material, C b(T bm − T ai)/L b ρ b

t :

Time (s)

T :

Temperature (K)

T b :

Bulk temperature of the bath material (K)

T e :

Instant equilibrium temperature at the interface between the additive and the frozen layer (K)

α :

Thermal diffusivity (m2 s−1)

γ :

Property-ratio, (K b C b/K a C a)

ρ :

Density (kg m−3)

θ :

Non-dimensional temperature, (T − T ai/T bm − T ai)

τ :

Non-dimensional time, (K b C b/C 2a r 20 )t

a:

Cylindrical additive

ai:

Initial condition of additive

af:

Within melting or freezing region of additive

ah:

Within heating region of additive

am:

Melting or freezing of additive

b:

Frozen bath material or bulk condition of bath material

bf:

Within melting or freezing region of bath material

bm:

Melting or freezing condition of bath material

References

  1. R. P. Singh, and A. Prasad: Ironmaking and Steelmaking, 2005, vol. 32, pp. 411–17.

    Article  Google Scholar 

  2. Singh UC, Prasad A, Kumar A (2011) Metall. Mater. Trans. B 42B, pp. 800–06.

    Article  Google Scholar 

  3. A. Prasad, and J. Nandi: Energy, 1992, vol. 17, pp. 413–17.

    Article  Google Scholar 

  4. E.R.G. Eckert and R.M. Drake: Analysis of Heat and Mass Transfer, International Student Edition, McGraw-Hill Koga Kusha, Tokyo, Japan, 1972.

    Google Scholar 

  5. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.

    Google Scholar 

  6. M. Epstein: Nucl. Sci. Eng., 1973, vol. 51, pp. 84–87.

    Google Scholar 

  7. M. Epstein, and G.M. Hauser: Nucl. Eng. Des., 1979, vol. 52, pp. 411–28.

    Article  Google Scholar 

  8. A. Prasad, and S.P. Singh: Trans. ASME, 1994, Vol. 116, pp. 218–23.

    Google Scholar 

  9. A. Prasad: J. Spacecraft Rockets, 1980, vol. 17, pp. 474–77.

    Article  Google Scholar 

  10. A. Prasad and S. Prasad: Proceeding of International Symposium on Cold Region Heat Transfer, Sapporo, Japan, 1989, pp. 175–81.

  11. U. C. Singh, A. Prasad, and A. Kumar: J. Min. Metall. Sec. B, 2012, vol. 48B, pp. 11-23.

    Article  Google Scholar 

  12. B.T.F. Chung, and L.T. Yeh: J. Spacecraft Rockets, 1975, vol. 12, pp. 329–30.

    Article  Google Scholar 

  13. R. P. Singh, and A. Prasad: Math. Comput. Model., 2003, vol. 37, pp. 849–62.

    Article  Google Scholar 

  14. A.S. Wood: Appl. Math. Modell. 2001, Vol. 25, pp. 815–24.

    Article  Google Scholar 

  15. S.L. Michell, and T.G. Myes: SIAM Rev., 2010, Vol. 52, pp. 57–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanatan Prasad.

Additional information

Manuscript submitted November 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Prasad, A. & Kumar, A. Development of Instant Interface Temperature at Time τ = 0+ of Low Melting Temperature Cylindrical Solid Additive-Bath System. Metall Mater Trans B 46, 2616–2627 (2015). https://doi.org/10.1007/s11663-015-0417-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0417-8

Keywords

Navigation