Skip to main content
Log in

Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today’s AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Atzeni, A. Salmi, Int J. Adv. Manuf. Technol., 2012, vol 62, pp. 1147.

    Article  Google Scholar 

  2. S. H. Huang, P. Liu, A. Mokasdar, L. Hou, Int J Adv Manuf Technol., 2012, vol. 67,pp. 1191.

    Article  Google Scholar 

  3. G. N. Levy, R. Schindel, J. P. Kruth, CIRP Annals – Manuf. Technol., 2003, vol. 52, pp. 589.

    Article  Google Scholar 

  4. O. Ivanova, C. Williams, T. Campbell, Rapid Prototyping Journal, 2013, vol. 19, pp. 353.

    Article  Google Scholar 

  5. J. Ruan and S. Jianzhong: in Solid Freeform Fabrication Symposium, Austin, TX, 2006, pp. 233.

  6. P. Mognol, P. Muller, and J.Y. Hascoët: in Conference on Advanced Research in Virtual and Rapid Prototyping, Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 2011, 28 September–1 October, pp. 473.

  7. L. Thivillon, P. Bertrand, B. Laget, I. Smurov, J. of Nuclear Mater., 2009, Vol. 385, pp. 236.

    Article  Google Scholar 

  8. Wohlers Report 2012: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report, Wohlers Associates Inc., Fort Collins, Colorado.

  9. P. Mercelis, J. P. Kruth, Rapid Prototyping Journal, 2006, vol.12, pp. 254.

    Article  Google Scholar 

  10. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, Metall. Mater. Trans. A, 2014, vol. 45A, pp 6260.

    Article  Google Scholar 

  11. D. Hu and R. Kovacevic, Int. J. Machine Tools Manuf., 2003, vol. 4, pp. 51.

  12. A.J. Pinkerton, L. Li, J. of Manuf. Sci. Eng., 2004, vol. 126, pp. 33.

    Article  Google Scholar 

  13. A.J. Pinkerton and L. Li: J. Phys. D, 1885, vol. 37.

  14. M. S. F. De Lima, S. Sankaré, Mater. & Design, 2014, vol. 55, pp. 526.

    Article  Google Scholar 

  15. R. Li, Y. Shi, Z. Wang, L. Wang, J. Li. J. Wei, Applied Surface Science, 2010, vol. 256, pp. 4350.

    Article  Google Scholar 

  16. K. Zhang, S. Wang, W. Liu, X. Shang, Mater. & Design, 2014, vol. 55, pp. 104.

    Article  Google Scholar 

  17. T. Amine, J.W. Newkirk, F. Liou, Case Studies in Thermal Engineering, 2014, vol 3 pp. 21.

    Article  Google Scholar 

  18. D. Majumdar, A. Pinkerton, Z. Liu, I. Manna, L. Li, Applied Surface Science, 2005, vol. 247, pp. 373.

    Article  Google Scholar 

  19. P.G.E Jerrard, L. Hao, and K.E. Evans: Proc. IMechE Part B, 2009, vol. 223(B11), pp. 1409–16.

  20. S.A. Lin, J.T. Lee, W.T. Tsai, Microstructural aspects and oxidation behaviour of laser surface cladded silicon-containing stainless steels, Scripta Mater., 1998, vol. 38, pp. 559.

    Article  Google Scholar 

  21. J.W. Elmer, S.M. Allen, T.W. Eager, Metall. Trans. A, 1989, vol. 20, pp. 2117.

    Article  Google Scholar 

  22. D. Gu, Y. Shen, Mater. & Design, 2009, Vol. 30, pp. 2903.

    Article  Google Scholar 

  23. K. C. Mills, B. J. Keene, International Materials Reviews, 1990, vol. 35, pp. 185.

    Article  Google Scholar 

  24. D.L. Olson and G.R. Edwards: Philos. Trans. R Soc. B 04/1998.

  25. S.A David, J.M. Vitek, International Materials Reviews, 1989, vol. 34, pp. 213.

    Article  Google Scholar 

  26. J.A. Brooks and J.C. Lippold: in ASM Handbook: Welding, Brazing and Soldering, 1994, pp. 15.

  27. S.A. David, S.S. Babu, J.M. Vitek, J of Materials, 2003, vol. 55, pp. 14.

    Google Scholar 

  28. W. Kurz, C. Bezençon, M. Gäumann, Sci. and Technol. of Advanced Mater., 2001 vol. 2, pp.185.

    Article  Google Scholar 

  29. S. Katayama and A. Matsunawa: Solidification Microstructures in Laser Welded Stainless Steels, Proc. ICALEO, 1984, pp. 60.

  30. R.S. Amano, S. Marek, B.F. Schultz, P.K. Rohtagi, J. of Manuf. Sci. and Eng., 2014, vol. 136, pp. 1.

    Article  Google Scholar 

  31. E. Yasa, J. Deckers and J.P. Kruth: Proceedings of The International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 6–10 October 2009, pp. 207–14.

  32. D. J. Kotecki, T.A. Sievert, WRC-1992 Constitution Diagram for Stainless Steel Weld Metal: A Modification of the WRC 1998 Diagram, Welding Journal, 1992, vol. 71, pp. 171.

    Google Scholar 

  33. T. Takalo, N. Suutala, T. Moisio, Metall. Trans. A, 1979, vol. 10, pp. 1173.

    Article  Google Scholar 

  34. G. Pacary, M. Moline, and J.C. Lippold: A Diagram for Predicting the Weld-Solidification-Cracking Susceptibility of Pulsed-Laser Welds in Austenitic Stainless Steels, Edison Welding Institute, 1990.

  35. J.C Lippold, Solification Behavior and Cracking Susceptibility of Pulsed Laser Welds in Austentic Stainless Steels, Welding Journal, 1994, vol. 73, pp. 129s-139s.

    Google Scholar 

  36. A. Simchi, Metall. and Mater. Trans. B, 2004, vol. 35, pp. 937.

    Article  Google Scholar 

  37. L.A. Krol Dobrzanski, L. Reimann, I. Czaja, Archives of Mater. Sci. and Eng., 2013, vol. 60, pp.87.

    Google Scholar 

  38. G. Strano, L. Hao, R.M. Everson, K.E. Evans, J. Mater. Processing Technol., 2013, vol. 213, pp. 589.

    Article  Google Scholar 

  39. C. Kamath, B. El-Dasher, G.F. Gallegos, W.E. King, A. Sisto, Int. J.of Advanced Manuf. Technol., 2014, vol.74 pp. 65.

    Article  Google Scholar 

  40. K. Yihong, S.B. Tor, and N.H Loh: Comparison of Two Metallic Additive Manufacturing Technologies: Selective Laser Melting, Electron Beam Melting, Progresses in Additive Manufacturing, C.C Kai, Y.W. Yee, T.M. Jen, and L. Erjia, eds., ISBN 978-981-09-0446-3, p. 231, Singapore.

  41. M. Marya, L.G. Hector, R. Verma, W. Tong, Mater. Sci. Eng. A, 2005, 418 (1), 341-356.

    Google Scholar 

  42. W. Tong, H. Tao, N. Zhang, X. Jiang, M. Marya, Jr, L.G. Hector, and X.Q Gayden, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2651.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Yves Hascoet.

Additional information

Manuscript submitted August 29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marya, M., Singh, V., Marya, S. et al. Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part. Metall Mater Trans B 46, 1654–1665 (2015). https://doi.org/10.1007/s11663-015-0310-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0310-5

Keywords

Navigation