Skip to main content
Log in

Kinetic Analysis of Recovery, Recrystallization, and Phase Precipitation in an Al-Fe-Si Alloy Using JMAEK and Sesták–Berggren Models

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

When studying the phase changes process in a rolled AA8011 alloy using DSC, we find that the peaks associated with phase precipitation under this microstructural condition are different from those obtained in homogenized microstructures. The differences observed are attributable, first, to the recovery process occurring at temperatures below 423 K (150 °C), which interacts with the precipitation of Si-rich precipitates or with Guinier–Preston zones both coexistent in that temperature range; and second, to the recrystallization above 473 K (200 °C), which coexists with precipitation of the α-AlFeSi phase. In this work, the precipitation and recovery–recrystallization kinetics are experimentally obtained and deconvoluted in peaks characteristic for each of the mechanisms involved; i.e., precipitation of GP zones, recovery, precipitation of α phase, and recrystallization. The deconvolution is achieved using functions of Gauss, Weibull, and Fraser–Suzuki; and the characterization of each reaction deconvoluted is realized through both Jhonson–Melh–Avrami–Erofeev–Kolmorokov kinetic models and Sesták–Berggren combined kinetic model. The kinetic study evinces that in addition to the expected reactions, other reactions, necessary for good experimental adjustment, appear. An isoconversional study is undertaken to numerically evaluate the kinetic triplet of every process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2ed. Pergamon Press Oxford,.England, 2004, pp.285-319.

    Book  Google Scholar 

  2. P.R. Rios, F. Siciliano Jr., H.R. Zschommler Sandim, R.L. Plaut and A.F. Padilha: Materials Research, 2005, vol. 8. pp. 225-238.

    Article  Google Scholar 

  3. E.P.Rocha Lima, R.A. Sanguinetti Ferreira. N. Freitas de Quadros and Y.P. Yadava: Rev. Iber. Ing. Mec. 2006, Vol. 10, pp.131-137.

    Google Scholar 

  4. A.M. Gokhale, C.V. Iswaran and R.T. DeHoff: Metallurgical Transactions A, 1979, vol.10A: 1239-1245.

    Article  Google Scholar 

  5. R.D. Doherty, D.A Hughes, F.J. Humphreys, J.J. Jonas, D. J. Jenson; M.E Kassner, W.E King, T.R. McNelley, H.J. McQueen and A.D. Rollett: Materials Science and Engineering A.,1997, vol. A238, pp. 219–274.

    Article  Google Scholar 

  6. J.E. Hatch: Aluminium: Properties and Physical Metallurgy, ASM International, Materials Park, 1984, pp. 105–33.

    Google Scholar 

  7. F. Haessner: in Systematic Survey and Basic Problems of Recrystallization in Recrystallization of Metallic Materials, F. Haessner, ed., Dr. Riederer Verlag, Stuttgart, 1978, pp. 1–10.

  8. M. Verdier, J. A. Saeter, M. Janecek, Y. Brechet, P. Guyot, D. Duly, E. Nes and R. Ørsund: Materials Science Forum, 1996, Vol. 217-222, pp. 435-440.

    Article  Google Scholar 

  9. M. Verdier, I.Groma, ¨L. Flandin, J. Lendvai, Y. Brechet and P. Guyot: Scripta Materiala, 1997, Vol. 37, pp. 449-454.

    Article  Google Scholar 

  10. M. Verdier, M. Janecek, Y. Bréchet and P. Guyot : Mat. Sci. Eng.,1998, Vol. A248 pp.187-197.

    Article  Google Scholar 

  11. M. Slámová, V. Ocenásek and G. Vander Voort: Materials Characterization, 2004, vol. 52, pp.165– 177.

    Article  Google Scholar 

  12. H.J. McQueen and W. Blum: Proceedings of the 6th International Conference on Aluminum Alloys (ICAA6), Japan Institute of Light Metals, Tokyo, Japan, 1998, vol. 1, pp. 99–112.

  13. J.A. Saeter, B. Forbord, H.E. Vatne, and E. Nes: Proceedings of the 6th International Conference on Aluminum Alloys (ICAA6), Japan Institute of Light Metals, Tokyo, Japan, 1998, vol. 1, pp. 113–26.

  14. F.J. Humphreys: Mater Sci. Technol., 1999, vol.15, pp.37– 44.

    Article  Google Scholar 

  15. E.S. Puchi, B. Fajardo, and J.V. Valera: Proceedings of the 4th International Conference on Aluminum Alloys, 1994, vol. 1, pp. 18–25.

  16. W. H. Hildebrandt: Metall. Trans. A. 1979, vol. 10A, pp.1045-1948.

    Article  Google Scholar 

  17. N. J. Luiggi: Z. Metallkunde, 1997, vol. 88 pp. 728-732.

    Google Scholar 

  18. N. J. Luiggi: Metall. Mat. Trans. A. 1998, vol. 29A, pp. 2669-2677.

    Article  Google Scholar 

  19. E.P.Rocha Lima: M.Sc. Thesis, Universidade Federal de Pernambuco-Brasil, 2002, pp. 72–74.

  20. S. Komatsu, T. Ikeda, T. Muramatsu and M. Matsuo: Eng. Materials, 1990, vol. 44–45, pp.31-56.

    Google Scholar 

  21. C. García–Cordovilla and E. Louis: J. Mater. Sci., 1986, vol. 21, pp. 971-979.

    Article  Google Scholar 

  22. N. J. Luiggi: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3271-75.

    Article  Google Scholar 

  23. N. Luiggi, M. Valera, J. Prin and M. Linares: Acta Microscópica, 2013, vol. 22(1), 105-110.

    Google Scholar 

  24. N. Luiggi, M. Valera, J.P. Rodriguez, and J. Prin: J. Metall., 2014, vol. 2014, Article ID 345945.

  25. Michel Perez, Olivier Lame and Alexis Deschamps: Advanced Engineering Materials, 2010, vol. 12, pp.433-446.

    Article  Google Scholar 

  26. D. Rafaja: Materials Structure, 2000, vol. 7, pp. 43-51.

    Google Scholar 

  27. A. Rey, I. Casas, J. Giménez, J. Quiñones and J. de Pablo: Journal of Nuclear Materials, 2009, vol. 385, pp. 467–473.

    Article  Google Scholar 

  28. G. Kitisy, J.M Gomez-Rosz and J. W. N Tuyn: J. Phys. D: Appl. Phys., 1998, vol.31,pp. 2636–2641.

    Article  Google Scholar 

  29. N. Luiggi and A. Betancourt: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 917-925.

    Article  Google Scholar 

  30. N. Luiggi and A. Betancourt: Metall. Mater. Trans. B., 1994, vol. 25B, 927-935.

    Article  Google Scholar 

  31. A. Perejón, P. E. Sánchez-Jiménez, J. M. Criado and L. A. Pérez-Maqueda: J. Phys. Chem. B, 2011, vol. 115, pp.1780–1791.

    Article  Google Scholar 

  32. J.W. Christian: The Theory of Transformation in Metals and Alloys, 2nd edn., Pergamon Press, Oxford, 1975.

  33. P.K. GALLAGHER (Editor): HANDBOOK OF THERMAL ANALYSIS AND CALORIMETRY SERIES. DEPARTMENT OF CHEMISTRY, OHIO STATE UNIVERSITY USA ELSEVIER-Amsterdam, 1998.

    Google Scholar 

  34. P. J. Haines (Editor): PRINCIPLES OF THERMAL ANALYSIS AND CALORIMETRY Edited by Oakland Analytical Services, Farnhurn, Surrey, U K, The Royal Society of Chemistry, 2002.

    Google Scholar 

  35. H. M. Heuvel and K. C. J. B. Lind: Anal. Chem., 1970, vol.42, pp.1044-48.

    Article  Google Scholar 

  36. A. Kolmogorov: Akad. Nauk SSSR, Izv. Ser. Matem, 1937, vol.1, pp. 355-359.

    Google Scholar 

  37. W. A. Johnson and R. F. Mehl: Trans AIME, 1939, vol. 135, pp. 416-442.

    Google Scholar 

  38. M. Avrami: J. Chem. Phys., 1939, vol. 7(12), pp. 1103–12.

    Article  Google Scholar 

  39. B.V. Erofeev: in Dispersity of Solid Phases in Connection with the Kinetics of Their Formation, Collected Works of the Belorussian Academy of Sciences, Institute of Chemistry, Academy of Sciences Press, Minsk, 1956, p. 13.

  40. J. Sesták and G. Berggren: Thermochim. Acta, 1971, vol.3, pp. 1–12.

    Article  Google Scholar 

  41. D. W. Henderson: J. Therm. Anal., 1979, vol. 15, pp. 325- 331.

    Article  Google Scholar 

  42. M. P. Shepilov and D. S. Baik: J. Non-Cryst. Solids, 1994, vol. 171, pp. 141-156.

    Article  Google Scholar 

  43. J. Málek : Thermochim. Acta, 1995, vol. 267, pp. 61-73.

    Article  Google Scholar 

  44. J. Málek, Thermochim. Acta, 2000, vol. 355, pp. 239-53.

    Article  Google Scholar 

  45. J. Šesták: Science of Heat and Thermophysical Studies: a generalized approach to thermal analysis. Elsevier, Amsterdam, 2005.

    Google Scholar 

  46. J. Šesták, A. Kozmidis-Petrović, and Ž. Živković: J. Min. Metall. Sect. B, 2011, vol. 47(2B), pp. 229–39.

    Google Scholar 

  47. R. Svoboda and J. Málek: J. Therm. Anal. Calorim, 2013, vol.114, pp. 473-482.

    Article  Google Scholar 

  48. A.V. Oppenheim and R. Schafer: Discrete-Time Signal Processing. Prentice Hall, Upper Saddle River, 1989.

    Google Scholar 

  49. J. Mendel and C. S. Burrus: Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing. Springer-Verlag, New York, 1990.

    Book  Google Scholar 

  50. H. Guo: IEEE Sign. Proc. Mag. 2011, vol28(9), pp. 134-137.

    Article  Google Scholar 

  51. R.B. Abernethy: The New Weibull Handbook, 3rd edn, Gulf Publishing Company, Houston, 1999.

    Google Scholar 

  52. Svoboda R and J. Málek: J Therm. Anal. Calorim., 2013, vol.111, pp. 1045–56.

    Article  Google Scholar 

  53. A.H.M. Hammad, K.A. Padmanabhan, G. Van Tendeloo and T.R. Anantharaman: Z. Metallkde., 1978, vol. 78, pp. 113-120.

    Google Scholar 

  54. K. Nakagawa, T. Kanadani, L. Anthony and H. Hashimoto: Materials Transactions, 2005, Vol. 46(4), pp. 779 – 783.

    Article  Google Scholar 

  55. L.M. Egorova, B.N. Korchunov, V.N. Osipov, V.A. Bershtein, S.P. Nikanorov: Phys. Solid State, 2013, vol. 55(12), pp. 2549–53.

    Article  Google Scholar 

  56. J. Sestack and J. Maleck: Sol. Sta, lonics, 1993, vol. 63-65, pp. 245-254.

    Article  Google Scholar 

  57. T. J. Konno, M. Kawasaki and: K. Hiraga: Philosophical Magazine B., 2001, Vol. 81(11),pp. 1713-1724.

    Article  Google Scholar 

  58. K. T. KASHYAP and P. G. KOPPAD: Bull. Mater. Sci.,2011, Vol. 34(7), pp. 1455–1458.

    Article  Google Scholar 

  59. R. Vissers, M.A van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara and S.J. Andersen: Acta Mater.,2007, Vol. 55, p. 3815-3823.

    Article  Google Scholar 

  60. Z. Liang: Doctoral Thesis. Technische Universität Berlin, 2012.

  61. Y. Langsrud: Eng. Mat., 1990, Vol.44-45, pp. 95-116.

    Google Scholar 

  62. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y.i He, F.-Y Xie: Mat. Sci. Engineer., 2003, vol. A363, pp. 140–151.

    Article  Google Scholar 

  63. N.A. Belov, A.A. Aksenov, and D.G. Eskin: Iron in Aluminium Alloys: Impurity and Alloying Element, Taylor and Francis, London, 2002, p. 121.

    Google Scholar 

  64. T. Hehenkamp: J. Phys. Chem. Solids, 1994, vol.55, pp. 907-915.

    Article  Google Scholar 

  65. P. Erhart, P. Jung, H. Schult, and H. Ullmaier: in Atomic Defects in Metals, Landolt-Bornstein, New Series, Group III, H. Ullmaier, ed., Springer-Verlag, Berlin, 1991, vol. 25.

  66. M. J. Fluss, L. C. Smedskjaer, M. K. Chason, D. G. Legnini and R. W. Siegel: Phys. Rev. B, 1978, 17, 3444-3454.

    Article  Google Scholar 

  67. L. L. Levenson: Appl. Phys. Lett., 1989, vol.55,pp. 2617-2619.

    Article  Google Scholar 

  68. C. S. Ting Chang, Z. Liang, E.Schmidt and J. Banhart: Intern. J.Mater. Research, 2012, Vol. 103(8), pp. 955-961.

    Article  Google Scholar 

  69. K.B Rundman, J.E Hilliard: Acta Metall., 1967, vol. 15(6), pp. 1025–1033.

    Article  Google Scholar 

  70. K. Shen, Z.M. Yin, T. Wang: Mater. Sci. Engineer., 2008, vol. A 477, pp. 395–398.

    Article  Google Scholar 

  71. H.J. Frost, M.F. Ashby: Deformation Mechanism Map, Pergamon Press, Oxford, 1982, p. 44.

    Google Scholar 

  72. E. Kovacs-Csétenyi, K. Banizs, N.Kalev: Eng. Mater., 1990, vol. 44-45, pp.181-188.

    Google Scholar 

  73. N. Luiggi: Metall. and Mater. Trans A.,2003, vol. 34A, pp .2679-2681.

    Article  Google Scholar 

  74. H.E. Kissinger: Anal. Chem.,1957, vol. 29,pp. 1702-1706.

    Article  Google Scholar 

  75. S. Vyazovkin, A.K. Burnham, J.M. Criado, L A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli: Thermochim. Acta, 2011, vol. 520(1),pp. 1-19.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Office of Academic Planning at the Universidad de Oriente through POA Project PN 5.5/2010. Our thanks go to Carlos Mota and his company Traduce for the translation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ney José Luiggi Agreda.

Additional information

Manuscript submitted August 14, 2014.

Appendix

Appendix

This Appendix presents Wi deconvolution parameters for each transfer function used, as described in the text. Table XII reports Wi values obtained for the experimental kinetic measurements at T < 423 K (150 °C), where the main reactions correspond to the precipitation of Guinier–Preston zones and to the restoration reaction. Table XIII presents the values obtained for the experimental kinetic for T > 473 K (200 °C). In this case, the main reactions are associated with both a phase precipitation and the recrystallization reaction. Note that the W1 parameter corresponds to the maximum temperature of the reaction, and its value changes when different reactions are involved in the total kinetic. Figure A1 shows comparatively different FTs involved in reproduction of the total kinetics in a homogenized sample heated at 10 °C/min.

Table XII Deconvolution Parameters of the Transfer Function Obtained for Precipitation of Guinier–Preston Zones and Recovery
Table XIII Deconvolution Parameters of the Transfer Function Obtained for Precipitation of α Phase and Recrystallization
Fig. A1
figure 14

Comparative behavior of the different FTs obtained for HS samples at 10 °C/min. Total kinetics. Squares: Fraser–Suzuki FTs, Circles: Gauss FTs, Triangles: Weibull FTs. The small difference on total kinetic corresponds to the Fraser–Suzuki FTs. In Table XIII are reported Wi parameters for this deconvolution. Note the difference in the peak position (W1) obtained in the second reaction (empty symbols): Gauss FTs 592.6 K (319.6 °C), Weibull FTs 586.3 K (313.3 °C) and Fraser–Suzuki FTs 584.3 K (311.3 °C)

See Appendix Tables XII, XIII and Figure A1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luiggi Agreda, N.J. Kinetic Analysis of Recovery, Recrystallization, and Phase Precipitation in an Al-Fe-Si Alloy Using JMAEK and Sesták–Berggren Models. Metall Mater Trans B 46, 1376–1399 (2015). https://doi.org/10.1007/s11663-015-0309-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0309-y

Keywords

Navigation