Skip to main content
Log in

FeMn Metal Droplet Behavior in the MnO-SiO2-CaO Slag System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Optimization of the MnO-SiO2-CaO-based slag composition in the FeMn decarburization refining process to minimize metal droplet entrainment has been studied. FeMn spherical droplets with average diameter of 2.5 mm were dispersed within the refining slag of the medium carbon grade ferro-manganese alloy process. Approximately 4.2 pct of the slag existed as FeMn droplets contributing to the overall metal yield loss in the current process. Sedimentation tests of slags with various SiO2 content ranging from 26 to 47 pct using Al2O3 crucibles held at 1773 K (1500 °C) for 30 minutes showed an improvement of the metal/slag separation. Estimated and measured viscosity of the slags showed SiO2 at 32 pct to be optimal for metal/slag separation. Changes in the SiO2 content to 32 pct in actual plant trials allowed significant decrease in the amount of metal droplet entrainment resulting in a decrease of metal in slag to 1.3 pct. Refining times for this optimized slag composition required at least 20 minutes holding for increased separation according to Stokes’ law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. J. Maddox, R. J. Pargeter and P. Woollin: ASME 2005 24th Int. Conf. Offshore Mech. Arctic Eng., Halkidi Greece, June 12–17, Vol. 3, 2005, pp. 245–51.

  2. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., Vol. 16, 2000, pp. 1391–409.

  3. R. Merello, F.J. Botana, J. Botella, M.V. Matres, and M. Marcos: Corrosion Science, Vol. 45, 2003, pp. 909–921.

    Article  Google Scholar 

  4. M. Sumita, T. Hanawa, S.H. Teoh: Materials Science and Engineering C, Vol. 24, 2004, pp. 753–760.

    Article  Google Scholar 

  5. J. Simmons: Materials Science and Engineering A, Vol. 207, 1996, pp. 159–169.

    Article  Google Scholar 

  6. J. W. Morris Jr., S. K. Hwang, K. A. Yushchenko, V. I. Belotzerkovetz, and O. G. Kvasnevskii: Advances in Cryogenic Engineering, Vol. 24, 1978, pp 91-102.

    Article  Google Scholar 

  7. T. Horiuchi, R. Ogawa, M. Shimada, S. Tone, M. Yamaga, and Y. Kasamatsu: Advances in Cryogenic Engineering Materials, Vol. 28, 1982, pp 93-103.

    Article  Google Scholar 

  8. Y.G. Kim and C.Y. Lim: Metall. Trans. A., Vol.19A, 1988, pp.1625-1626.

    Article  Google Scholar 

  9. C.-J. Rick, K. Beskow, and P.-Å. Lundström: Nordic Steel Mining Rev., 2010, pp. 64–69.

  10. J. Kwang, D.S. Lee, C.S. Min, Y.K. Park, C.J. Hae, and H.H. Seong: The 12th Int. Ferroalloys Congr. Sustain. Future, June 6–9, 2010 Helsinki, Finland, p. 197.

  11. J. Basson, T.R. Curr, and W.A. Gericke: Int. Ferro-Alloys Congr., New Dehli India, February 18–21, 2007, pp. 3–24.

  12. C.W. Bale, A.D. Pelton, and W.T. Thompson: Factsage®. Ecole Polytechnique, Montreal, http://www.crct.polymtl. Ca (2002).

  13. R.H. Eric, A.A. Hejja, and D.D. Howat: Proc. 1994 EPD Congr., San Fransisco. Warren, G.W. (ed.).Warrandale, Pennsylvania, TMS, 1994, pp. 641–56.

  14. A.A. Hejja and R.H. Eric: Proc. 1996 EPD Congr., Anaheim. Warren, G.W. (ed.). Warrandale, Pennsylvania, TMS, 1996, pp. 27–41.

  15. A.A. Hejja and R.H. Eric: Proc. 1997 EPD Congr., Orlando. Mishra, B. (ed.). Warrandale. Pennsylvania, TMS, 1997, pp. 179–92.

  16. P.V. Riboud, Y. Roux, D. Lucas, and H. Gaye: Fachber. Huttenprax. Metallweiterverarb, Vol. 19, 1981, pp. 859.

    Google Scholar 

  17. G. Urbain: Steel Research Int., Vol.58, 1987, pp.111-15.

    Google Scholar 

  18. L. Segers, A. Fontana and R. Winard: Electrochim. Acta, Vol.24, 1979, pp.213-218.

    Article  Google Scholar 

  19. D.S. Min, H.C. Jo, and K.J. Lee: Method for Estimating Alloy Density of Molten Ferro-Manganese, Patent No. 10-1112984-0000.

  20. J. Lee, L.T. Hoai, J. Cho, and J.H. Park: ISIJ Int., Vol.52, 2012, pp.2145-2148.

    Article  Google Scholar 

  21. I. Sohn and D.J. Min: Steel Research Int., Vol.83, 2012, pp.611-630.

    Article  Google Scholar 

  22. H. Park, J.-Y. Park, G.H. Kim, and I. Sohn: Steel Research Int., Vol.83, 2012, pp.150-156.

    Article  Google Scholar 

  23. G.H. Kim and I. Sohn: Metall. Mat. Trans. B., Vol.45, 2014, pp.86-95.

    Article  Google Scholar 

  24. G.H. Kim and I. Sohn: J. Non-Crys. Solids, Vol.358, 2012, pp.1530-1537.

    Article  Google Scholar 

Download references

Acknowledgment

This study has been partially supported by BK21 (Brain Korea 21) Plus Project in the Division of the Eco-Humantronics Information Materials and the Ministry of Trade, Industry and Energy (2014-11-0698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

Manuscript submitted July 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, HS., Ryu, J.W. & Sohn, I. FeMn Metal Droplet Behavior in the MnO-SiO2-CaO Slag System. Metall Mater Trans B 46, 606–614 (2015). https://doi.org/10.1007/s11663-014-0234-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0234-5

Keywords

Navigation