Skip to main content
Log in

Optimization of a Permanent Step Mold Design for Mg Alloy Castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The design of a permanent Step mold for the evaluation of the mechanical properties of light alloys has been reviewed. An optimized Step die with a different runner and gating systems is proposed to minimize the amount of casting defects. Numerical simulations have been performed to study the filling and solidification behavior of an AM60B alloy to predict the turbulence of the melt and the microshrinkage formation. The results reveal how a correct design of the trap in the runners prevents the backwave of molten metal, which could eventually reverse out and enter the die cavity. The tapered runner in the optimized die configuration gently leads the molten metal to the ingate, avoiding turbulence and producing a balanced die cavity filling. The connection between the runner system and the die cavity by means of a fan ingate produces a laminar filling in contrast with a finger-type ingate. Solidification defects such as shrinkage-induced microporosity, numerically predicted through a dimensionless version of the Niyama criterion, are considerably reduced in the optimized permanent Step mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Bonollo and S. Odorizzi: Numerical Simulation of Foundry Processes, 1st ed., S.G.E., Padova, Italy, 2001, pp. 9-50.

    Google Scholar 

  2. K.U. Kainer: Magnesium—Alloys and Technology, 1st ed., Wiley-VCH Verlag GmbH & Co. KG aA, Weinheim, Germany, 2004, pp. 1-22.

    Google Scholar 

  3. P. Grandier-Vazeille and S. Jacob: Fonderie, 1970, vol. 287, pp. 70-4.

    Google Scholar 

  4. ISO 2378, Aluminium Alloy Chill Castings: Reference Test Bar, 1972.

  5. G.K. Sigworth and T.A. Kuhn: AFS Trans., 2009, vol. 117, pp. 55-62.

    Google Scholar 

  6. D. Emadi, L.V. Whiting, M. Sahoo, P.D. Newcombe, T.M. Castles, P. Burke, and K.D. Callaghan: AFS Trans., 2001, vol. 109, pp. 487-98.

    Google Scholar 

  7. D. Emadi, L.V. Whiting, M. Sahoo, and D. Larouche: AFS Trans., 2004, vol. 112, pp. 225-36.

    Google Scholar 

  8. Y. Wang, D. Schwam, D.V. Neff, C.-J. Chen, and X. Zhu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1048-59.

    Article  Google Scholar 

  9. M. Twilley: Int. J. Metalcast., 2012, vol. 6, pp. 57-61.

    Google Scholar 

  10. E. Miguelucci: AFS Trans., 1985, vol. 93, pp. 913-6.

    Google Scholar 

  11. S.T. McClain, J.T. Berry, and B. Dawsey: AFS Trans., 2003, vol. 111, pp. 147-58.

    Google Scholar 

  12. S. Akhtar, G. Timelli, F. Bonollo, L. Arnberg, and M. Di Sabatino: Giessereiforschung, 2009, vol. 61, pp. 2-14.

    Google Scholar 

  13. C. Beckermann: Proc. Int. Summer School “High Integrity Die Castings: Processing Fundamentals, WPI, Worcester, 2008.

  14. STACAST Project: New Quality and Design Standards for Aluminium Alloys Cast Products, FP7-NMP-2012-CSA-6, Contract No. 319188, http://www.stacast-project.org.

  15. F. Grosselle, G. Timelli, F. Bonollo, A. Tiziani, and E. Della Corte: Metall. Ital., 2009, vol. 101, pp. 25–32.

  16. F. Grosselle, G. Timelli, and F. Bonollo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3536-45.

    Article  Google Scholar 

  17. M. Jolly: JOM, 2005, vol. 57, pp. 19-28.

    Article  Google Scholar 

  18. S. Zhizhong, H. Hu, C. Xiang, W. Qigui, and Y. Wenying: J. Mater. Sci. Technol., 2008, vol. 24, pp. 93-105.

    Google Scholar 

  19. F.-Y. Hsu and H.-J. Lin: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1110-7.

    Article  Google Scholar 

  20. A. Ardekhani and R. Raiszadeh: J. Mater. Eng. Perform, 2012, vol. 21, pp. 1352-62.

    Article  Google Scholar 

  21. J. Campbell: Complete Casting Handbook—Metal Casting Processes, Metallurgy, Techniques and Design, 1st ed., Butterworth-Heinemann, Oxford, U.K., 2011, pp. 42–46, 792–95.

  22. M. Afsharpour, B. Homayun, and S.M.A. Boutorabi: Mater. Sci. Technol., 2014, vol. 30, pp. 152-9.

    Article  Google Scholar 

  23. MAGMA Giessereitechnologie GmbH: MAGMASOFT v.5.1, MAGMAsoft Manual, MAGMA Giessereitechnologie GmbH, Aachen, 2011.

  24. FOSECO: Dycote® Manual—Coatings for Non-Ferrous Metal Die-Casting, 1st ed., Foseco Int. Ltd., Tamworth, U.K., pp. 1–28.

  25. K.D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163-75.

    Article  Google Scholar 

  26. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Int. Cast Met. J., 1982, vol. 7, pp. 52-63.

    Google Scholar 

  27. T.P. Kotschi and O.F. Kleist: AFS Int. Cast Met. J., 1979, vol. 4, pp. 29-38.

    Google Scholar 

  28. Z. Sun, H. Hu, X. Chen, Q. Wang, and W. Yang: J. Mater. Sci. Technol., 2008, vol. 24, pp. 93-5.

    Google Scholar 

  29. M. Di Sabatino, L. Arnberg, and F. Bonollo: Metal. Sci. Tech., 2004, vol. 22, pp. 9-15.

    Google Scholar 

  30. International Committee Of Foundry Technical Associations: International Atlas of Casting Defects, AFS Inc., Des Plaines, IL, 1993, pp. 228-34.

    Google Scholar 

  31. U. Feurer and R. Wunderlin: in Appendix 9 - Dendrite Tip Radius and Spacing,, W. Kurz and D.J. Fisher, eds., Trans Tech Publications Ltd., Uetikon-Zuerich, Switzerland, 1998, pp. 257–59.

  32. D.H. Kirkwood: Mater. Sci. Eng. A, 1985, vol. 73, p. Ll-4.

  33. A. Mortenson: Metall. Trans. A, 1991, vol. 22A, pp. 569-74.

    Article  Google Scholar 

  34. A. Banerjee: M.S. Thesis, University of Western Ontario, Ontario, 2013, pp. 75–77.

  35. I. Basu, J.T. Wood, and J.P. Weiler: Mater. Sci. Forum, 2012, vols. 706-9, pp. 1279-84.

    Article  Google Scholar 

  36. F. Chiesa, B. Duchesne, G. Bournival, and G. Morin, AFS Trans., 2006, vol. 114, pp. 667-81.

    Google Scholar 

Download references

Acknowledgments

This work was developed with the financial support of the European Project StaCast (New Quality and Design Standards for Aluminium Alloys Cast Products, FP7-NMP-2012-CSA-6, Contract No. 319188). The authors would like to acknowledge Lorenzo Trevisan (Enginsoft) for helping with MAGMASOFT simulations. Many thanks are also due to Mr. G. Muneratti (Foseco) for the experimental contribution to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Timelli.

Additional information

Manuscript submitted June 8, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timelli, G., Capuzzi, S. & Bonollo, F. Optimization of a Permanent Step Mold Design for Mg Alloy Castings. Metall Mater Trans B 46, 473–484 (2015). https://doi.org/10.1007/s11663-014-0197-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0197-6

Keywords

Navigation