Skip to main content
Log in

Use of Molten Salt Fluxes and Cathodic Protection for Preventing the Oxidation of Titanium at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The current study demonstrates that it is possible to protect both solid and liquid titanium and titanium alloys from attack from air by cathodically polarizing the titanium component using an electro-active high-temperature molten salt flux and a moderate polarization potential. The electrolytic cell used comprises a cathode of either solid titanium or liquid titanium alloy, an electrolyte based on molten calcium chloride or fluoride salt, and an anode consisting of an inert oxygen-evolving material such as iridium metal. The new approach renders possible the processing of titanium at elevated temperatures in the presence of oxygen-containing atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.R. Roberge: Handbook of Corrosion Engineering, McGraw-Hill, New York, NY, 2000, ch. 11, Cathodic Protection, pp. 863–919.

  2. L.K. Matson, E.F. Stephan, P.D. Miller, W.K. Boyd and R.P. Milford: Corros., 1966, vol. 22, pp. 194–7.

    Article  Google Scholar 

  3. T.B. Massalski, editor: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990, vol. 3, p. 2926.

    Google Scholar 

  4. G.Z. Chen, D.J. Fray and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–4.

    Article  Google Scholar 

  5. G.Z. Chen, D.J. Fray and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1041–52.

    Article  Google Scholar 

  6. C. Schwandt, D.T.L. Alexander and D.J. Fray: Electrochim. Acta, 2009, vol. 54, pp. 3819–29.

    Article  Google Scholar 

  7. C. Schwandt, G.R. Doughty and D.J. Fray: Key Eng. Mater., 2010, vol. 436, pp. 13–25.

    Article  Google Scholar 

  8. E.M. Levin and H.F. McMurdie: Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, 1975, vol. III, p. 394, Fig. 4894.

    Google Scholar 

  9. E.M. Levin and H.F. McMurdie: Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, 1975, vol. III, p. 378, Fig. 4862.

    Google Scholar 

  10. E.M. Levin, C.R. Robbins and H.F. McMurdie: Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, 1964, vol. 1, p. 422, Fig. 1483.

    Google Scholar 

  11. R. Barnett, K.T. Kilby and D.J. Fray: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 150–7.

    Article  Google Scholar 

  12. K.T. Kilby, S.Q. Jiao and D.J. Fray: Electrochim. Acta, 2010, vol. 55, pp. 7126–33.

    Article  Google Scholar 

  13. S.Q. Jiao and D.J. Fray: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 74–7.

    Article  Google Scholar 

  14. S.Q. Jiao, K.N.P. Kumar, K.T. Kilby and D.J. Fray: Mater. Res. Bull., 2009, vol. 44, 1738–42.

    Article  Google Scholar 

  15. D.H Wang, A.J. Gmitter and D.R. Sadoway: J. Electrochem. Soc., 2011, vol. 158, pp. E51–4.

    Article  Google Scholar 

  16. H. Kim, J. Paramore, A. Allanore and D.R. Sadoway: J. Electrochem. Soc., 2011, vol. 158, pp. E101–5.

    Article  Google Scholar 

  17. A. Allanore, L. Yin and D.R. Sadoway: Nature, 2013, vol. 497, pp. 353-6.

    Article  Google Scholar 

  18. X. Guan, U.B. Pal, S. Gopalan and A.C. Powell: J. Electrochem. Soc., 2013, vol. 160, pp. F1179-86.

    Article  Google Scholar 

  19. T.B. Massalski, editor: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990, vol. 2, p. 1495.

    Google Scholar 

  20. G.J. Janz: J. Phys. Chem. Ref. Data, 1988, vol. 17, suppl. 2.

  21. H.-H. Emons and D. Richter: Z. Anorg. Allg. Chem., 1965, vol. 339, pp. 91-8.

    Article  Google Scholar 

  22. Z. Liu and G. Welsch: Metall. Trans. A, 1988, vol. 19A, pp. 1121-5.

    Article  Google Scholar 

  23. A. Roine: HSC Chemistry, Version 6.0, Outokumpu Research Oy, Pori, Finland, 2006.

  24. C. Schwandt, C. Allen, and D.J. Fray: TMS 2014 Supplemental Proceedings, 2014, pp. 87–92.

Download references

Acknowledgment

The authors are grateful to the Office of Naval Research ONR for financial support through Grant Number N62909-10-1-7089, ACO N6297, ONRG LTR 7089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schwandt.

Additional information

Manuscript submitted January 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwandt, C., Fray, D.J. Use of Molten Salt Fluxes and Cathodic Protection for Preventing the Oxidation of Titanium at Elevated Temperatures. Metall Mater Trans B 45, 2145–2152 (2014). https://doi.org/10.1007/s11663-014-0134-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0134-8

Keywords

Navigation