Skip to main content

Advertisement

Log in

Physical Simulation of Hot Rolling of Ultra-fine Grained Pure Titanium

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Complex thermo-mechanical processing routes are often developed for fabrication of ultra-fine grained (UFG) metallic materials with superior mechanical properties. The processed UFG metallic materials often have to undergo additional metalforming operations for fabrication of complex shape parts or tools that can significantly affect their microstructure and crystallographic texture, thus further changing their mechanical properties. The development of novel thermo-mechanical processing routes for fabrication of UFG metallic materials or for further metalforming operations is very time-consuming and expensive due to much higher cost of the UFG metallic materials. The objective of this work is to perform physical simulation of hot rolling of UFG pure Ti obtained via severe plastic deformation and to analyze the effect of hot rolling on the microstructure, crystallographic texture, and hardness of the material. It is demonstrated that physical simulation of metalforming processes for UFG metallic materials can significantly reduce the amount of material required for development of processing routes as well as to increase the efficiency of experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Lutjering, J.C. Williams: Titanium. Springer, Berlin, 2003, pp. 5-10.

    Book  Google Scholar 

  2. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59–67.

    Article  Google Scholar 

  3. D.H. Shin, I. Kim, J. Kim, Y.S. Kim, S.L. Semiatin: Acta Mater., 2003, vol. 51, pp. 983–96.

    Article  Google Scholar 

  4. G.I. Raab, E.P. Soshnikova, R.Z. Valiev: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 674–7.

    Article  Google Scholar 

  5. Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee: Scripta Mater., 2006, vol. 54, pp. 1785–9.

    Article  Google Scholar 

  6. G.G. Yapici, I. Karaman, H.J. Maier: Mater. Sci. Eng. A, 2006, vol. 434, pp. 294–302.

    Article  Google Scholar 

  7. J. Gubicza, Zs. Fogarassy, Gy. Krallics, J. Labar, T. Torkoly: Mater. Sci. Forum, 2008, vol. 589, pp. 99-104.

    Article  Google Scholar 

  8. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma, R.Z. Valiev: J. Mater. Res., 2003, vol. 18, pp. 1908-1917.

    Article  Google Scholar 

  9. I. Sabirov, M.T. Perez-Prado, J.M. Molina-Aldareguia, I.P. Semenova, G.Kh. Salimgareeva, R.Z. Valiev: Scripta Mater., 2011, vol. 64, pp. 69–72.

    Article  Google Scholar 

  10. H.S. Kim, S.J. Kim, J.W. Kim, D.H. Kim, W.J. Kim: Mater. Sci. Eng. A., 2011, vol. 528, pp. 8479-85.

    Article  Google Scholar 

  11. V.L. Sordi, M. Ferrante, M. Kawasaki, T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7870-6.

    Article  Google Scholar 

  12. D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, R.Z. Valiev: Mater. Sci. Eng. A, 2013, vol. 562, pp. 128-36.

    Article  Google Scholar 

  13. I. Sabirov, R.Z. Valiev, I.P. Semenova, R. Pippan: Metall. Mater. Trans. A, 2010, vol. 41, pp. 727-33.

    Article  Google Scholar 

  14. L. Mishnaevsky, E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, E. Gutmanas, I. Gotman, E. Rabkin, S. Psakh’e, M. Seefeldt, A. Smolin: Mater. Sci. Eng. R, 2014, vol. 81, pp. 1-19.

    Article  Google Scholar 

  15. R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, T.G. Langdon: JOM, 2012, vol. 64, pp. 1134-42.

    Article  Google Scholar 

  16. V.V. Stolyarov, L. Zeipper, B. Mingler, M. Zehetbauer: Mater. Sci. Eng. A, 2008, vol. 476, pp. 98-105.

    Article  Google Scholar 

  17. Z. Fan, H. Jiang, X. Sun, J. Song, X. Zhang, C. Xie: Mater. Sci. Eng. A, 2009, vol. 527, pp. 45–51.

    Article  Google Scholar 

  18. V.V. Stolyarov, Ya.E. Beigel’zimer, D.V. Orlov, and R.Z. Valiev: Phys. Metal. Metall., 2005, vol. 99, pp. 204–11.

  19. A. Taylor, M. Weiss, T. Hilditch, N. Stanford, P.D. Hodgson: Mater. Sci. Eng. A., 2012, vol. 555, pp. 148-53.

    Google Scholar 

  20. E.C. Moreno-Valle, M.A. Monclus, J.M. Molina-Aldareguia, N. Enikeev, I. Sabirov: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2399-408.

    Article  Google Scholar 

  21. O. Saray, G. Purcek, I. Karaman, H.J. Maier: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4194-206.

    Article  Google Scholar 

  22. D. Ferguson, W. Chen, T. Bonesteel, J. Vosburgh: Mater. Sci. Eng. A, 2009, vol. 499, pp. 329-32.

    Article  Google Scholar 

  23. S.T. Mandziej: Mater. Tech., 2010, vol. 44, pp. 105-19.

    Google Scholar 

  24. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–6.

    Article  Google Scholar 

  25. R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  Google Scholar 

  26. D. Green: J. Inst. Metals., 1972, vol. 100, pp. 295.

    Google Scholar 

  27. H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, R. Bolingbroke: J. Testing Eval., 1997, vol. 25, pp. 61-73.

    Article  Google Scholar 

  28. J.H. Beynon, C.M. Sellars: J. Testing Eval., 1985, vol. 13, pp. 28-38.

    Article  Google Scholar 

  29. M.C. Mirza, C.M. Sellars: Mater. Sci. Tech., 2001, vol. 17, pp. 1133-41.

    Article  Google Scholar 

  30. M.C. Mirza, C.M. Sellars: Mater. Sci. Tech., 2001, vol. 17, pp. 1142-8.

    Article  Google Scholar 

  31. N.J. Silk, M.R. van der Winden: Mater. Sci. Tech., 1999, vol. 15, pp. 295-300.

    Article  Google Scholar 

  32. S. Hosford: Acta Metal., 1966, vol. 14, pp. 1085-94.

    Article  Google Scholar 

  33. G.E. Dieter: in ASM Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 61–67.

  34. U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and anisotropy, Cambridge University Press, Cambridge, 2000, pp. 203-7.

    Google Scholar 

  35. L. Lutterotti, S. Matthies, and H.R. Wenk: Proceeding of the 12th International Conference on Textures of Materials (ICOTOM-12), 1999, p. 1599.

  36. G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, p. 34.

    Article  Google Scholar 

  37. Conrad H, Jones R. The Science, Technology and Application of Titanium. Oxford, New York: Pergamon Press; 1970; 493.

    Google Scholar 

  38. I. Kim, W.S. Jeong, J. Kim, K.T. Park, D.H. Shin: Scripta Mater., 2001, vol. 45, pp. 575-581.

    Article  Google Scholar 

  39. L. Wang, Y.C. Wang, A.P. Zhilyaev, A.V. Korznikov, S.K. Li, E. Korznikova, T.G. Langdon: Scripta Mater., 2014, vol. 77, pp. 33-36.

    Article  Google Scholar 

  40. N.P. Gurao, S. Suwas: J. Mater. Res., 2011, vol. 26, pp. 523-532.

    Article  Google Scholar 

  41. H. Gleiter: Phys. Stat. Sol., 2006, vol. 172, pp. 41-51.

    Article  Google Scholar 

  42. Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, P.C. Skaret, H.J. Roven: Mater. Sci. Eng. A, 2010, vol. 527, pp. 789–796.

    Article  Google Scholar 

  43. S. Sandlöbes, I. Schestakow, S. Yi, S. Zaefferer, J. Chen, M. Friák, J. Neugebauer, D. Raabe: Mater. Sci. Forum, 2011, vol. 690, pp 202-205.

    Article  Google Scholar 

  44. B. Kashyap, P.D. Hodgson, Y. Estrin, I. Timokhina, M.R. Barnett, I. Sabirov: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3294-3303.

    Article  Google Scholar 

  45. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma: Acta Mater., 2004, vol. 52, pp. 1859–1869.

    Article  Google Scholar 

  46. K. Hajizadeh, S. Ghobadi Alamdari, B. Eghbali: Physica B, 2013, vol. 417, pp. 33-38.

    Article  Google Scholar 

  47. G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (2nd Edition). CRC Press, Boca Raton, USA, 2009, p. 711.

    Book  Google Scholar 

  48. I. Alexandrov, J. Bonarski, A. Korshunov, L. Tarkowski, V. Sitdikov. Archives Metall. Mater., 2008, vol. 53, pp. 237-241.

    Google Scholar 

  49. Y.N. Wang, J.C. Huang: Mater. Chem. Phys., 2003, vol. 81, pp. 11–26.

    Article  Google Scholar 

  50. S. Suwas, N.P. Gurao: Journal of the Indian Institute of Science, 2008, vol. 88, pp. 151-177.

    Google Scholar 

  51. N. Bozzolo, N. Dewobroto, H. R. Wenk, F. Wagner. J. Mater. Sci., 2007, vol. 42, pp. 2405–2416.

    Article  Google Scholar 

  52. J.D. Embury: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Essex, 1971, pp. 331–402.

  53. E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–53.

    Article  Google Scholar 

  54. N.J. Petch: J. Iron. Steel Inst., 1953, vol. 174, pp. 25–8.

    Google Scholar 

  55. T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035-59.

    Article  Google Scholar 

  56. I. Sabirov, M.Y. Murashkin, R.Z. Valiev: Mater. Sci. Eng. A, 2013, vol. 560, pp. 1-24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge gratefully the Russian Ministry for Education and Science for the financial support of this study through the Federal Targeted Program, Contract No 14.B25.31.0017 by June 28, 2013. IS acknowledges the funding through the ViNaT project, Contract No 295322, FP7-NMP-2011.1.4-5. IS also acknowledges gratefully the Spanish Ministry of Economy and Competitiveness for financial support through the Ramon y Cajal Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilchat Sabirov.

Additional information

Manuscript submitted November 11, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, A., Gunderov, D., Sitdikov, V. et al. Physical Simulation of Hot Rolling of Ultra-fine Grained Pure Titanium. Metall Mater Trans B 45, 2315–2326 (2014). https://doi.org/10.1007/s11663-014-0133-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0133-9

Keywords

Navigation