Skip to main content
Log in

Solidification and Melting of Aluminum onto Circular Cylinders Under Forced Convection: Experimental Measurements and Numerical Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solid–liquid interface is examined as aluminum solidifies and melts onto a circular cylinder in flowing liquid aluminum. Cylinders of different elemental composition from aluminum were immersed into liquid aluminum flow-fields under conditions which promote the aluminum solid–liquid interface to move forward and then in reverse. The solidification and melting time (SMT) of the aluminum shell was measured by thermocouples located on the surface of the cylinder. These thermocouples monitor the point in time where the receding solid–liquid interface approaches the surface of the cylinder. The data demonstrate that the shell solidifies and melts faster closer to the stagnation point. ANSYS Fluent, which incorporates an enthalpy algorithm, was utilized to predict this phase change process. When a thermal resistance is implemented at the cylinder–aluminum interface, there is good agreement between the numerically predicted and the experimentally measured aluminum shell SMTs. The effect of various magnitudes of thermal resistance at the cylinder–aluminum interface was explored on the local aluminum SMTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

∆:

Difference

ρ :

Density

µ :

Dynamic viscosity

Θ:

Angular coordinate

A :

Mushy zone damping parameter

c :

Specific heat

H :

Enthalpy

h :

Heat transfer coefficient

k :

Thermal conductivity

L :

Latent heat of solidification

n :

Normal vector

P :

Pressure

R :

Thermal resistance

S :

Interface position

S :

Source term

SPH :

Superheat

T :

Temperature

t :

Time

u :

x component of velocity

v :

y component of velocity

Al:

Aluminum

cyl:

Cylinder

s:

Solid

int:

Interface

References

  1. V. Alexiades and A.D. Solomon: Mathematical Modeling of Melting and Freezing Processes. Taylor and Francis, Washington DC, 1993.

    Google Scholar 

  2. B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55–65.

    Article  Google Scholar 

  3. D.J McDaniel and N. Zabaras: Int. J. Numer. Methods Eng., 1994, vol. 37, pp. 2755–77.

    Article  Google Scholar 

  4. M. Sukhram and S.A. Argyropoulos: in Light Metals 2011 Proceedings of the 50th Annual Conference of Metallurgists of CIM, M. Favard and G. Dufour, eds., pp. 383–94, 2011.

  5. S.A. Argyropoulos: Scand. J. Metall., 2001, vol. 30, pp. 273–85.

    Article  Google Scholar 

  6. S.A. Argyropoulos and Z. Li: In S. Seetharaman, A. McLean, R. Guthrie and S. Sridhar, editors, Treatise on Process Metallurgy volume 2 Process Phenomena. Elsevier, Oxford, 2014, pp. 359–426.

    Chapter  Google Scholar 

  7. Y.L. Hao and Y.-X. Tao: J. Heat Transfer, 2001, vol. 123, pp. 937–50.

    Article  Google Scholar 

  8. Y.L. Hao and Y.-X. Tao: J. Heat Transfer, 2002, vol. 124, pp. 891–903.

    Article  Google Scholar 

  9. E. Assis, L. Katsman, G. Ziskind, and R. Letan: Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 1790–804.

    Article  Google Scholar 

  10. E. Assis, G. Ziskind, and R. Letan: J. Heat Transfer, 2009, vol. 131, pp. 024502.

    Article  Google Scholar 

  11. J.M. Khodadadi and Y. Zhang: Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 1605–18.

    Article  Google Scholar 

  12. F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, and L. Fan: Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 3464–72.

    Article  Google Scholar 

  13. B.J. Jones, D. Sun, S. Krishnan, and S.V. Garimella: Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 2724–38.

    Article  Google Scholar 

  14. F. Wolff and R. Viskanta: Exp. Heat Transfer, 1987, vol. 1, pp. 17–30.

    Article  Google Scholar 

  15. C. Gau and R. Viskanta: J. Heat Transfer, 1986, vol. 108, pp. 174–81.

    Article  Google Scholar 

  16. C. Gau and R. Viskanta: Int. J. Heat Mass Transfer, 1984, vol. 27, pp. 113–23.

    Article  Google Scholar 

  17. J. Szekely and P.S. Chhabra: Metall. Trans., 1970, vol. 1, pp. 1195–203.

    Article  Google Scholar 

  18. T.A. Campbell and J.N. Koster: J. Cryst. Growth, 1994, vol. 140, pp. 414–25.

    Article  Google Scholar 

  19. N. Hannoun, V. Alexiades, and T.Z. Mai: Numer. Heat Transfer Part B, 2003, vol. 44, pp. 253–76.

    Article  Google Scholar 

  20. N. Hannoun, V. Alexiades, and T.Z. Mai: Int. J. Numer. Methods Fluids, 2005, vol. 48, pp. 1283–308.

    Article  Google Scholar 

  21. B. Melissari and S.A. Argyropoulos: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 691–700.

    Article  Google Scholar 

  22. B. Melissari and S.A. Argyropoulos: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 639–49.

    Article  Google Scholar 

  23. V.R. Voller, C.R. Swaminathan, and B.G. Thomas: Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 875–98.

  24. A. Kumar and S. Roy: Int. J. Therm. Sci., 2010, vol. 49, pp. 397–408.

    Article  Google Scholar 

  25. A. Kumar and S. Roy: J. Thermophys. Heat Transfer, 2009, vol. 23, pp. 762–72.

    Article  Google Scholar 

  26. A.D. Brent, V.R. Voller, and K.J. Reid: Numer. Heat Transfer Part A, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  27. J. Crank: Free and Moving Boundary Problems. Oxford University Press, New York, NY, 1993.

    Google Scholar 

  28. R. Ishiguro, K. Sugiyama, and T. Kumada: Int. J. Heat and Mass Transfer, 1979, vol., pp. 1041–8.

  29. P. Schmidt: Mater. Sci. Eng. A, 1993, vol. A173, pp. 271–4.

    Article  Google Scholar 

  30. T.S. Prasanna Kumar and K. Narayan Prabhu: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 717–27.

  31. M. Prates and H. Biloni: Metall. Trans., 1972, vol. 3, pp. 1501–10.

    Article  Google Scholar 

  32. J. Kim: Interfacial Heat Transfer and Solidification of Mg and Al Alloys in a Single Belt Casting Process. PhD thesis, McGill University, 2005.

  33. Jayananda and K. Narayan Prabhu: Trans. Indian Inst. Met., 2012, vol. 65, pp. 539–43.

  34. J.A. Sekhar, G.J. Abbaschian, and R. Mehrabian: Mater. Sci. Eng., 1979, vol. 40, pp. 105–10.

    Article  Google Scholar 

  35. A. Hamasaiid, M.S. Dargusch, C.J. Davidson, S. Tovar, T. Loulou, F. Rezai-Aria, and G. Dour: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1303–16.

    Article  Google Scholar 

  36. C.H.K. Williamson: Annu. Rev. Fluid Mech., 1996, vol. 28, pp. 477–539.

    Article  Google Scholar 

  37. B. Mutlu Sumer and J. Fredsoe: Hydrodynamics Around Cylindrical Structures Revised Edition. World Scientific Publishing, Hackensack, NJ, 2006.

  38. ANSYS Inc.: ANSYS Meshing User’s Guide. Canonsburg, PA, November 2011.

  39. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, NY, 1980.

    Google Scholar 

  40. ANSYS Inc.: ANSYS FLUENT Theory Guide. Canonsburg, PA, November 2011.

  41. M.C. Flemings: Solidification Processing. McGraw Hill, Toronto, ON, 1974.

    Google Scholar 

  42. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Woodhead Publishing, Cambridge, UK, 2002.

    Book  Google Scholar 

  43. Y.S. Touloukian: Thermophysical Properties of Matter. IFI/Plenum, New York, NY, 1970.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. We thank Professor Markus Bussmann of the Department of Mechanical and Industrial Engineering at the University of Toronto for providing access to ANSYS Fluent and we thank Sharon Chi-Yan Li for her assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros A. Argyropoulos.

Additional information

Manuscript submitted August 29, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhram, M., Argyropoulos, S.A. Solidification and Melting of Aluminum onto Circular Cylinders Under Forced Convection: Experimental Measurements and Numerical Modeling. Metall Mater Trans B 45, 1723–1738 (2014). https://doi.org/10.1007/s11663-014-0114-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0114-z

Keywords

Navigation