Skip to main content
Log in

Thermodynamic Consideration of the Removal of Iron from Titanium Ore by Selective Chlorination

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Thermodynamic study of the chlorination reactions of oxides such as titanium oxides and iron oxides at elevated temperatures was carried out in order to consider the removal of iron from titanium ore using selective chlorination method. In particular, various chlorination reactions were analyzed by utilizing chemical potential diagrams, and the applicability and usefulness of this thermodynamic study for analyzing the selective chlorination of titanium ore were demonstrated. Furthermore, chlorination reactions using various types of chlorinating agents were discussed from different viewpoints. It was shown that the selective chlorination of iron from titanium ore by HCl gas is thermodynamically feasible and efficient for upgrading titanium ore. Further, thermodynamic analysis showed that under certain conditions, TiCl4 can be used as a chlorinating agent for the iron in the ore, and iron can be removed by evaporation directly from the ore as chloride gas. The results presented in this study provide useful information for developing a process for upgrading low-grade titanium ore for use as a titanium smelting feed through a dry method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. The Japan Titanium Society: Titanium Japan, 2013, vol. 61, no.1, p. 84.

    Google Scholar 

  2. T.H. Okabe and J. Kang: The Latest Technological Trend of Rare Metals, CMC, Tokyo, 2012, Chap. 6–1, pp. 83–94

  3. M. Tsutsui: Kinzoku, 2013, vol.83, no.4, pp. 292-95.

    Google Scholar 

  4. J.E. Kogel, N.C. Trivedi, J.M. Barker and S.T. Krukowski: Industrial Minerals & Rocks Commodities, Markets, and Uses 7th ed., Society for Mining, Metallurgy, and Exploration, Inc. (SME), Littleton, CO, 2006.

    Google Scholar 

  5. G.E. Williams and J.D. Steenkamp: Proceedings of Southern African Pyrometallurgy, Johannesburg, 2006, pp. 181–88.

  6. D. Filippou and G. Hudon: JOM, 2009, vol.61, no.10, pp.36-42.

    Article  Google Scholar 

  7. F. Habashi: Handbook of Extractive Metallurgy, VCH Verlagsgesellschaft mbH—A Wiley, Weinheim, 1997.

  8. T.S. Mackey: JOM, 1994, vol. 46, no. 4, pp.59-64.

    Article  Google Scholar 

  9. M. Guéguin and F. Cardarelli: Miner. Process. Extr. Metall. Rev., 2007, vol. 28, pp.1-58.

    Article  Google Scholar 

  10. K. Borowiec, A.E. Grau, M. Gueguin, and J.-F. Turgeon: United States Patent 5830420, 1998.

  11. R.G. Becher, R.G. Canning, B.A. Goodheart, and S. Uusna: Proc. Aust. Inst. Min. Metall., 1965, vol. 21, pp.21-44.

    Google Scholar 

  12. W. Hoecker: European Patent EP0612854, 1994.

  13. J.H. Chen: United States Patent 3825419, 1974.

  14. J.H. Chen and L.W. Huntoon: United States Patent 4019898, 1977.

  15. J.H. Chen: United States Patent 3967954, 1976.

  16. J.H. Braun, A. Baidins and R.E. Marganski: Prog. Org. Coat., 1992, vol.20, pp. 105-38.

    Article  Google Scholar 

  17. M.K. Akhtar, Y. Xiong and S.E. Pratsinis: AlChE J., 1991, vol.37, pp.1561-70.

    Article  Google Scholar 

  18. T. Wako: Industrial Wastewater Management in Japan, Conference of WEPA Dialogue in Sri Lanka, 2012. http://www.env.go.jp/en/focus/docs/files/20120801-51.pdf.

  19. H. Zheng and T.H. Okabe: J. Alloy. Compd., 2008, vol. 461, pp. 459-66.

    Article  Google Scholar 

  20. C.O. Robichaud, A.E. Uyar, M.R. Darby, L.G. Zucker and M.R. Wiesner: Environ. Sci. Technol., 2009, vol. 43, pp. 4227–33.

    Article  Google Scholar 

  21. K.I. Rhee and H.Y. Sohn: Metall. Trans. B, 1990, vol. 21B, no. 4, pp. 341-47.

    Article  Google Scholar 

  22. S. Fukushima and E. Kimura: Titan. Zircon., 1975, vol. 23, no.2, pp.67-74.

    Google Scholar 

  23. E. Kimura, A. Fuwa and S. Fukushima: Nippon Kogyo Kaishi, 1979, vol.95, pp. 821-27.

    Google Scholar 

  24. A. Fuwa, E. Kimura and S. Fukushima: Metall. Trans. B, 1978, vol.9B, pp.643-52.

    Article  Google Scholar 

  25. K.I. Rhee and H.Y. Sohn: Metall. Trans. B, 1990, vol.21B, no.4, pp. 331-40.

    Article  Google Scholar 

  26. K.I. Rhee and H.Y. Sohn: Metall. Trans. B, 1990, vol.21B, pp.321-30.

    Article  Google Scholar 

  27. L.K. Doraiswamy, H.C. Bijawat and M.V. Kunte: Chem. Eng. Progr., 1959, vol.55, no.10, pp.80-88.

    Google Scholar 

  28. H. Zheng and T.H. Okabe: Proceedings of the 16 th Iketani Conference: Masuko Symposium, Japan, 2006, pp. 1005–10.

  29. R. Matsuoka and T.H. Okabe: Proceedings of the Symposium on Metallurgical Technology for Waste Minimization (134 th TMS Annual Meeting), San Francisco, United States, 2005.

  30. J. Kang and T.H. Okabe: Metall. Mater. Trans. B, 2013, vol.44B, pp.516-27.

    Article  Google Scholar 

  31. J. Kang and T.H. Okabe: Mater. Trans., 2013, vol.54, no.8, pp.1444-53.

    Article  Google Scholar 

  32. H. Zheng: Doctoral Thesis, The University of Tokyo, 2007.

  33. D.F. Othmer: United States Patent 3859077, 1975.

  34. D.F. Othmer and R. Nowak: AlChE J., 1972, vol.18, no.1, pp.217-20.

    Article  Google Scholar 

  35. D.F. Othmer: United States Patent 3989510, 1976.

  36. G. Holland and R. Nowak: United States Patent 4288411, 1981.

  37. T.H. Okabe and T. Oishi: Basic and Application of Thermodynamics and Reaction Kinetics for Materials Processing, The Mining and Materials Processing Institute of Japan, Kyoto, Japan, 2004.

    Google Scholar 

  38. D.R. Gaskell: Introduction to the Thermodynamics of Materials 3rd ed., Taylor & Francis, Washington, USA, 1995.

    Google Scholar 

  39. M. Takahashi and N. Masuko: Soda Chlor., 2003, vol. 11-12, pp.276-94.

    Google Scholar 

  40. J.S.J. van Deventer: Thermochim. Acta, 1988, vol. 124, pp. 205–15.

  41. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1995.

    Book  Google Scholar 

  42. R. Porter: Mineral Sands Industry Fact Book, Iluka, 2013. http://www.iluka.com/docs/industry-company-information/mineral-sands-industry-fact-book.

  43. G.M. Bedinger: Titanium Mineral Concentrates, U.S. Geological Survey, Mineral Commodity Summaries, January 2013. http://minerals.usgs.gov/minerals/pubs/commodity/titanium/mcs-2013-timin.pdf.

  44. G.M. Bedinger: Titanium and Titanium Dioxide, U.S. Geological Survey, Mineral Commodity Summaries, January 2013. http://minerals.usgs.gov/minerals/pubs/commodity/titanium/mcs-2013-titan.pdf.

  45. N. Kaworu: Titanium Japan, 2013, vol. 61 (1), pp. 35–40.

Download references

Acknowledgments

The authors are grateful to Professors Kazuki Morita and Takeshi Yoshikawa, The University of Tokyo; Professor K. T. Jacob, Indian Institute of Science, India; Emeritus Professor Toshio Oishi, Kansai University; Professor Takashi Nakamura, Tohoku University; Professor Shu Yamaguchi, The University of Tokyo; Professor Tetsuya Uda, Kyoto University; Mr. Hidekazu Kato, International Institute for Mining Technology; and Messrs. Susumu Kosemura, Masanori Yamaguchi, and Yuichi Ono, Toho Titanium Co., Ltd., for their valuable suggestions. We would like to specially thank Professor Haiyan Zheng of Northeastern University, China, and Mr. Ryosuke Matsuoka of Global Advanced Metals Pty., Ltd., for providing useful information and the results of their preliminary studies. This research was partly funded by a Grant-in-Aid for the Next Generation of World-Leading Researchers (NEXT Program) for the Research Project for Development of Environmentally Sound Recycling Technology of Rare Metals. Jungshin Kang is grateful for the financial support provided by the MEM (Mechanical, Electrical and Materials Engineering) International Graduate Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) and Grants for Excellent Graduate Schools Program from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru H. Okabe.

Additional information

Manuscript submitted October 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Okabe, T.H. Thermodynamic Consideration of the Removal of Iron from Titanium Ore by Selective Chlorination. Metall Mater Trans B 45, 1260–1271 (2014). https://doi.org/10.1007/s11663-014-0061-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0061-8

Keywords

Navigation