Skip to main content
Log in

Analysis and Characterization of Relationships Between the Processing and Optical Responses of Amorphous BaTiO3 Nanothin Films Obtained by an Improved Wet Chemical Process

Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present work, we have tried to study and develop the processing of amorphous BaTiO3 nanothin films, which have amorphous structure and nanometric thickness. It was seen that they exhibit enhanced optical responses. An improved method was used to prepare amorphous BaTiO3 nanothin films, which, compared to other approaches, is simple, cost-effective, and environmentally friendly. It was found that amorphous BaTiO3 films exhibit better optical transmittance in contrast to the similar nanocrystalline, polycrystalline, or thick films. This finding is due to the absence of grain boundaries, which have an important role in light scattering processes. AFM and SEM results indicate that the surface of the nanothin film is uniform, smooth, and amorphous. Moreover, the surface of the nanothin film exhibits a dense structure with no crack and voids. RMS roughness of the prepared nanothin film was quite small and equal to 0.7 nm. This value is very less than other reported RMS roughness values which were in the range of 5 to 11 nm. XRD results indicate that all of the prepared thin films in this work are amorphous, independent of number of dip-coated layers and preparation conditions. The work also aims to study and develop the processing of the amorphous BaTiO3 nanothin films deeply. The results showed that annealing temperature has a more pronounced effect on transmittance, thickness, and shift in the absorption edge of the thin films than annealing time. It was found that the viscosity of the sol has remarkable influence on the transmission spectrum and shift in the absorption edge of the films. The transparency of the films decreases with an increase in the viscosity and concentration of the sol. It was found that size of particle within the sol and rate of the sol–gel reactions have important roles on the transmittance of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Ashiri, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4414-26.

    Article  Google Scholar 

  2. R. Ashiri, A. Nemati, and M. Sasani Ghamsari, Mater. Res. Bull., 2011, vol. 46, pp. 2291–95.

    Article  Google Scholar 

  3. R. Ashiri, Vib. Spec., 2013, vol. 66, pp. 24-29.

    Article  Google Scholar 

  4. M. Antonietta Loi and J.C. Hummelen: Nat. Mater., 2013, vol. 12, pp. 1087–89.

  5. R. Ashiri, A. Nemati, and M. Sasani Ghamsari: Ceram. Int., 2014, vol. 40, pp. 8613–19.

  6. R. Ashiri, A. Nemati, and M. Sasani Ghamsari: J. Non-Cryst. Sol., 2009, vol. 355, pp. 2480–84.

  7. H.X. Zhang, Mater. Chem. Phys., 2000, vol. 63, pp. 174-77.

    Article  Google Scholar 

  8. F.C.M. Woudenberg, W.F.C. Sager, Thin Solid Films, 2005, vol. 471, pp. 134-39.

    Article  Google Scholar 

  9. H. Kozuka, M. Kajimura, J. Am. Ceram. Soc., 2000, vol. 83, pp. 1056-62.

    Article  Google Scholar 

  10. M.C. Gust, N.D. Evans, J. Am. Ceram. Soc., 1997, vol. 80, pp. 2828-36.

    Article  Google Scholar 

  11. W. Cai, Ch. Fu, J. Gao, Physica, 2011, vol. B406, pp. 3583-87.

    Article  Google Scholar 

  12. O. Harizanov, A. Harizanova, Mater. Sci. Eng., 2004, vol. B106, pp. 191-95.

    Article  Google Scholar 

  13. B. Lee, J. Zhang, Thin Solid Films, 2001, vol. 388, pp. 107-13.

    Article  Google Scholar 

  14. H. Kumazawa, K. Masuda, Thin Solid Films, 1999, vol. 353, pp. 144-48.

    Article  Google Scholar 

  15. C.J. Brinker, G.C. Frye, A.J. Hurd, Thin Solid Films, 1991, vol. 201, pp. 97-108.

    Article  Google Scholar 

  16. R. Thomas, D.C. Dube, Thin Solid Films, 1999, vol. 346, pp. 212-25.

    Article  Google Scholar 

  17. T. Pencheva, M. Nenkov, Vacuum, 2000, vol. 58, pp. 374-86.

    Article  Google Scholar 

  18. M. Burgos, M. Langlet, Thin Solid Films, 1999, vol. 349, pp. 19-23.

    Article  Google Scholar 

  19. W.D. Callister, Fundamentals of Materials Science and Engineering, 5th ed., Wiley, New York, 2004.

    Google Scholar 

  20. S.Y. Ma, X.H. Yang, X.L. Huang, J. Alloys Compd., 2013, vol. 566, pp. 9-15.

    Article  Google Scholar 

  21. Zh. Xu, Y. Tanushi, M. Suzuki, Thin Solid Films, 2006, vol. 515, pp. 2326-31.

    Article  Google Scholar 

  22. J.C. Manifacier and J. Gasiot, J.P. Fillard: Physics, 1976, vol. E9, pp. 1002–04.

  23. R. Swanepoel, Physics, 1983, vol. E16, pp. 1214-22.

    Google Scholar 

  24. E.F. Keskenler, S. Doǧan, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5088-95.

    Article  Google Scholar 

  25. H.Y. Tian, Thin Solid Films, 2002, vol. 408, pp. 200-05.

    Article  Google Scholar 

  26. G.J. Fang, D. Li, B.-L. Yao, Thin Solid Films, 2002, vol. 418, pp. 156-62.

    Article  Google Scholar 

  27. C.J. Brinker, G.W. Scherer. Sol-Gel Science, Academic Press, New York, 1990.

    Google Scholar 

  28. R.M.S. Martins, V. Musat, Thin Solid Films, 2010, vol. 518, pp. 7002-06.

    Article  Google Scholar 

  29. L. Qian, L. Xifeng, Z. Jianhua, J. Alloys Compd.., 2013, vol. 572, pp. 175-79.

    Article  Google Scholar 

  30. M.R. Golobostanfard, H. Abdizadeh, Ceram. Int., 2012, vol. 38, pp. 5843-51.

    Article  Google Scholar 

  31. O. Harizanov, Sol. Energy Mater. Sol. Cell., 2000, vol. 63, pp. 185-95.

    Article  Google Scholar 

  32. M. Dutta, S. Mridha, D. Basak, Appl. Surf. Sci., 2007, vol. 254, pp. 2743-47.

    Article  Google Scholar 

  33. R. Ashiri: M.Sc. Dissertation, Sharif University of Technology, Tehran, Iran, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouholah Ashiri.

Additional information

Manuscript submitted November 24, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashiri, R. Analysis and Characterization of Relationships Between the Processing and Optical Responses of Amorphous BaTiO3 Nanothin Films Obtained by an Improved Wet Chemical Process. Metall Mater Trans B 45, 1472–1483 (2014). https://doi.org/10.1007/s11663-014-0057-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0057-4

Keywords

Navigation