Skip to main content
Log in

Study on the Effect of Melt Convection on Phase Separation Structures in Undercooled CuCo Alloys Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

We studied the effect of melt convection on phase separation structures in undercooled Cu80Co20 alloys by using an electromagnetic levitator, where a static magnetic field was applied to control convection in the molten alloys. It was found that, when the static magnetic field was relatively small, dispersed structures with relatively fine Co-rich spheres distributed in the matrix of the Cu-rich phase were observed. However, a few large, coalesced Co-rich phases appeared in the Cu-rich matrix when the magnetic field exceeded a certain value, i.e., approximately 1.5 T in this study. The mean diameter of the droplet-shaped Co-rich phases distributed in the matrix of the Cu-rich phase increased gradually with the magnetic field and increased rapidly at approximately 1.5 T. Moreover, it was speculated from the result of periodic laser heating that the marked change in the phase separation structures at approximately 1.5 T might be due to a convective transition from turbulent flow to laminar flow in the molten sample, where the time variation of temperature in the lower part of the electromagnetically levitated molten sample was measured when the upper part of the sample was periodically heated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Nakagawa: Acta Metall. Mater., 1958, vol. 6, pp. 704-711.

    Article  Google Scholar 

  2. C. D. Cao, G. P. Gorler, D. M. Herlach, B. Wei: Mater. Sci. Eng. A, 2002, vol. 325, pp. 503-510.

    Article  Google Scholar 

  3. I. Yamauchi, N. Ueno, M. Shimaoka. I. Ohnaka: J Mater. Sci., 1998, vol. 33, pp. 371-378.

    Article  Google Scholar 

  4. X. Song, S. W. Mahon, R. F. Cochrane, B. J. Hickley, M. A. Howson: Mater. Lett., 1997, vol. 31, pp. 261-266.

    Article  Google Scholar 

  5. C. D. Cao, D. M. Herlach, M. Kolbe, G. P. Gorler, B. Wei: Scripta Mater., 2003, vol. 48, pp. 5-9.

    Article  Google Scholar 

  6. L. Battezzati, S. Curiotto, E. Johnson, N. H. Pryds: Mater. Sci. Eng. A, 2007, vol. 449-451, pp. 7-11.

    Article  Google Scholar 

  7. M. Kolbe, J. R. Gao: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 509-513.

    Article  Google Scholar 

  8. J. Gao, Y.K. Zhang, T. Fukuda, H. Yasuda, M. Kolbe, J.C. He: J. Phys. Conf. Ser., 2009, vol. 144, 012117.

    Article  Google Scholar 

  9. Y.K. Zhang, J. Gao, D. Nagamatsu, T. Fukuda, H. Yasuda, M. Kolbe, J.C. He: Scripta Mater., 2008, vol. 59, pp. 1002-1005.

    Article  Google Scholar 

  10. J.H. Zong, B. Li, J. Szekely: Acta Astronaut., 1992, vol. 26, pp. 435-449.

    Article  Google Scholar 

  11. B.Q. Li, S.P. Song: Microgravity Sci. Tec. XI, 1998, vol. 26, pp. 134-143.

    Google Scholar 

  12. V. Bojarevics, K. Pericleous: ISIJ Int., 2003, vol. 43, pp. 890-898.

    Article  Google Scholar 

  13. R.W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.

    Article  Google Scholar 

  14. H. Kobatake, H. Fukuyama, T. Tsukada, S. Awaji: Meas. Sci. Technol., 2010, vol. 21, 025901.

    Article  Google Scholar 

  15. K.-I. Sugioka, T. Tsukada, H. Fukuyama, H. Kobatake, S. Awaji: Int. J. Heat Mass Tran., 2010, vol. 53, pp. 4228-4232.

    Article  Google Scholar 

  16. K. Sugie, H. Kobatake, M. Uchikoshi, M. Isshiki, K.-I. Sugioka, T. Tsukada, H. Fukuyama: Jpn. J Appl. Phys, 2011, vol. 50, 11RD04.

    Google Scholar 

  17. Y. Baba, K.-I. Sugioka, M. Kubo, T. Tsukada, K. Sugie, H. Kobatake, H. Fukuyama: J. Chem. Eng. Jpn, 2011, vol. 44, pp. 321-327.

    Article  Google Scholar 

  18. H. Kobatake, H. Khosroabadi, H. Fukuyama: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2466-2472.

    Article  Google Scholar 

  19. R. Kurosawa, T. Inoue, Y. Baba, K.-I. Sugioka, M. Kubo, T. Tsukada, H. Fukuyama: Meas. Sci. Technol., 2013, vol. 24, 015603.

    Article  Google Scholar 

  20. T. Kekesi, M. Uchikoshi, K. Mimura, M. Isshiki: Metall Mater. Trans. B, 2001, vol. 32, pp. 573-582.

    Article  Google Scholar 

  21. M. Uchikoshi, H. Shibuya, J. Imaizumi, T. Kekesi, K. Mimura, M. Isshiki: Metall Mater. Trans B, 2010, vol. 41-2, pp. 448-455.

    Article  Google Scholar 

  22. K. Pericleous, V. Bojarevics, A. Roy: Int. J. Microgravity Sci. Appl., 2013, vol. 30, pp. 56–63.

    Google Scholar 

  23. G. Narsimham: J. Colloid Interf. Sci., 2004, vol. 272, pp. 197-209.

    Article  Google Scholar 

  24. S. F. Roudsari, G. Turcotte, R. Dhib, F. Ein-Mozaffari: Comput. Chem. Eng. 2012, vol. 45, pp. 124-136.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Numbers 24760127 and 25289273, SENTAN, JST, and CASIO science promotion foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Tsukada.

Additional information

Manuscript submitted February 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugioka, Ki., Inoue, T., Kitahara, T. et al. Study on the Effect of Melt Convection on Phase Separation Structures in Undercooled CuCo Alloys Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field. Metall Mater Trans B 45, 1439–1445 (2014). https://doi.org/10.1007/s11663-014-0052-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0052-9

Keywords

Navigation