Skip to main content
Log in

Control of MgO·Al2O3 Spinel Inclusions during Protective Gas Electroslag Remelting of Die Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of calcium treatment and/or aluminum-based deoxidant addition on the oxygen control and modification of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting (P-ESR) of H13 die steel with low oxygen content was experimentally studied. It is found that all the inclusions in the consumable electrode are MgO·Al2O3 spinels, besides a few MgO·Al2O3 spinels surrounded by an outer (Ti,V)N or MnS layer. After P-ESR refining combined with proper calcium treatment, all the original MgO·Al2O3 spinels in the electrode (except for the original MgO·Al2O3 spinels having been removed in the P-ESR process) were modified to mainly CaO-MgO-Al2O3 and some CaO-Al2O3 inclusions, both of which have a low melting point and homogeneous compositions. In the case of only Al-based deoxidant addition, all the oxide inclusions remaining in ESR ingots are MgO·Al2O3 spinels. The operation of Al-based deoxidant addition and/or calcium treatment during P-ESR of electrode steel containing low oxygen content is invalid to further reduce the oxygen content and oxide inclusions amount compared with remelting only under protective gas atmosphere. All the original sulfide inclusions were removed after the P-ESR process. Most of the inclusions in ESR ingots are about 2 μm in size. The mechanisms of non-metallic inclusions evolution and modification of MgO·Al2O3 spinels by calcium treatment during the P-ESR process were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.S. Ma, J. Zhou, Z.Z. Chen, Z.K. Zhang, Q.A. Chen, and D.H. Li: J. Iron Steel Res. Int., 2009, vol. 16, pp. 56–60.

    Article  CAS  Google Scholar 

  2. J.I. Takamura and S. Mizoguchi: Proc. 6th Int. Iron Steel Cong., ISIJ, Nagoya, Japan, 1990, p. 591.

  3. C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, P. Valentin, and H. Schifferl: Iron. Steel., 2003, vol. 30, pp. 165–9.

    Article  CAS  Google Scholar 

  4. M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 359–66.

    Article  CAS  Google Scholar 

  5. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711–9.

    Article  Google Scholar 

  6. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S.R. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–9.

    Article  Google Scholar 

  7. E.B. Pretorius, H.G. Oltmann, and T. Cash: Iron Steel Technol., 2010, vol. 7, pp. 31–44.

    CAS  Google Scholar 

  8. N. Verma, M. Lind, P.C. Pistorius, R.J. Fruehan, and M. Potter: Iron Steel Technol., 2010, vol. 7, pp. 189–97.

    Google Scholar 

  9. S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  10. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  11. D.G. Zhou, W.G. Xu, P. Wang, J. Fu, J.H. Xu, C.S. Wang, and M.D. Xu: Iron. Steel., 1998, vol. 33, pp. 13–7.

    CAS  Google Scholar 

  12. S.F. Medina and A. Cores: ISIJ Int., 1993, vol. 33, pp. 1244–51.

    Article  CAS  Google Scholar 

  13. C.S. Wang, S.G. Liu, M.D. Xu, F.X. Liu, and D.S. Li: Special Steel, 1997, vol. 18, pp. 31–5.

    Google Scholar 

  14. L.Z. Chang, H.S. Yang, and Z.B. Li: Steelmaking, 2010, vol. 26, pp. 46–50.

    CAS  Google Scholar 

  15. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1596–1607.

  16. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    Article  CAS  Google Scholar 

  17. C.B. Shi, X.C. Chen, and H.J. Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295–302.

    Article  CAS  Google Scholar 

  18. M. Jiang, X.H. Wang, B. Chen, and W.J. Wang: ISIJ Int., 2010, vol. 50, pp. 95–104.

    Article  CAS  Google Scholar 

  19. Y.J. Kang, F. Li, K. Morita, and D. Sichen: Steel Res. Int., 2006, vol. 77, pp. 785–92.

    CAS  Google Scholar 

  20. M. Suzuki, R. Yamaguchi, K. Murakami, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 247–56.

    Article  CAS  Google Scholar 

  21. J.H. Wei and A. Mitchell: Acta Metall. Sin., 1984, vol. 20, pp. B261–79.

    CAS  Google Scholar 

  22. M.E. Fraser and A. Mitchell: Iron. Steel., 1976, vol. 3, pp. 279–87.

    CAS  Google Scholar 

  23. A. Mitchell, J. Szekely, and J.F. Elliott: Electroslag Refining, The Iron and Steel Institute, London, U.K., 1973. pp. 3–15.

    Google Scholar 

  24. M.A.T. Andersson, P.G. Jönsson, and M.M. Nzotta: ISIJ Int., 1999, vol. 39, pp. 1140–9.

    Article  CAS  Google Scholar 

  25. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  CAS  Google Scholar 

  26. H. Doostmohammadi, P.G. Jönsson, J. Komenda, and S. Hagman: Steel Res. Int., 2010, vol. 81, pp. 142–9.

    Article  CAS  Google Scholar 

  27. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–8.

    Article  CAS  Google Scholar 

  28. M. Wakoh, T. Sawai, and S. Mizoguchi: ISIJ Int., 1996, vol. 36, pp. 1014–21.

    Article  CAS  Google Scholar 

  29. R. Diederichs and W. Bleck: Steel Res. Int., 2006, vol. 77, pp. 202–9.

    CAS  Google Scholar 

  30. G. Hoyle: Electroslag Processes: Principles and Practice, Applied Science Publishers, London, U.K., 1983.

  31. D.A.R. Kay and R.J. Pomfret: J. Iron Steel Inst., 1971, vol. 209, pp. 962–5.

    CAS  Google Scholar 

  32. M.E. Valdez, Y. Wang, and S. Sridhar: Steel Res. Int., 2004, vol. 75, pp. 247–56.

    CAS  Google Scholar 

  33. K. Isobe, Y. Ueshima, H. Maede, S. Mizoguchi, A. Ishikawa, and I. Kudo: Proc. 6th Int. Iron Steel Cong., ISIJ, Nagoya, Japan, 1990, p. 634.

  34. E. Plöckinger: J. Iron Steel Inst., 1973, vol. 211, pp. 533–41.

    Google Scholar 

  35. W. Holzgruber, K. Petersen, and P.E. Schneider: Trans. Int. Vac. Metal. Conf., 1968, pp. 499–523.

Download references

Acknowledgments

The author (C.B. Shi) would like to express his sincere thanks to Prof. Petrus C. Pistorius of Carnegie Mellon University for his in-person fruitful discussions and stimulating guidance. The thanks are also extended to Prof. Li-feng Zhang, Dr. Shu-feng Yang, and Dr. Fang Jiang for their invaluable discussions. The financial support provided by the International Science and Technology Cooperation and Exchange of Special Projects (Grant No. 2010DFR50590) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jie Guo.

Additional information

Manuscript submitted August 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, CB., Chen, XC., Guo, HJ. et al. Control of MgO·Al2O3 Spinel Inclusions during Protective Gas Electroslag Remelting of Die Steel. Metall Mater Trans B 44, 378–389 (2013). https://doi.org/10.1007/s11663-012-9780-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9780-x

Keywords

Navigation