Skip to main content
Log in

Approach for Minimizing Operating Blast Furnace Carbon Rate Using Carbon-Direct Reduction (C-DRR) Diagram

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An approach for reducing input carbon rate of a blast furnace using carbon-direct reduction (C-DRR) diagram has been developed. The role of shaft efficiency, blast input conditions, and heat loss rate in reducing the carbon rate has been brought out. A two-zone thermochemical model has been used to develop C-DRR diagrams for analyzing operating data of a furnace as well as predicting conditions for reducing its carbon rate. The model can be integrated with the control system of a blast furnace for driving an operating furnace to reduce carbon rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Energy Agency (IEA): Tracking Industrial Energy Efficiency and CO 2 Emissions. In Support of G8 Plan of Action, IEA/OECD, chap 5, France (2007).

  2. F. Pettersson, H. Saxén, K. Deb, Materials and Manufacturing Processes, 2009, Vol. 24 (5), pp. 343–349.

    Article  CAS  Google Scholar 

  3. C. Ryman: Licentiate Thesis, No. 2007:63, ISSN:1402-1757, ISRN: LTU-LIC-07/6-SE, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, Sweden, November 2007, pp 1–3 and 17.

  4. T. Mitra, M. Helle, F. Pettersson, H. Saxén, N. Chakraborti, Materials and Manufacturing Processes, 2011, Vol. 26 (3), pp. 475-480.

    Article  CAS  Google Scholar 

  5. A. Agarwal, U. Tewary, F. Pettersson, S. Das, H. Saxén, N. Chakraborti, Ironmaking and Steelmaking, 2010, Vol. 37 (5), pp. 353-359.

    Article  CAS  Google Scholar 

  6. D. M. Kundrat, Metall. Trans. B, 1986, Vol. 17 (4), pp. 705-724.

    Article  Google Scholar 

  7. D. M. Kundrat, Metall. Trans. B, 1989, Vol. 20 (2), pp. 205-218.

    CAS  Google Scholar 

  8. A. K. Biswas (1981) Principles of Blast Furnace Ironmaking: Theory and Practice. Cootha Publishing House, Brisbane

    Google Scholar 

  9. C. Ryman, C. E. Grip, P. A. Franck, and J. O. Wikstrom, Proceedings of the International Green Energy Conference, Paper No. 004, IGEC-1, 2005.

  10. P.L. Hooey, A. Boden, C. Wang, C-E Grip, B. Jansson, ISIJ International, 2010, Vol. 50 (7), pp. 924–930.

    Article  CAS  Google Scholar 

  11. FactSage version 6.2: CRCT-ThermFact Inc., Montreal, Canada (www.crct.polymtl.ca) and GTT-Technologies, Aachen, Germany (www.gtt-technologies.de).

  12. X. Bi, K. Torssell, O. Wijk, ISIJ International, 1992, Vol. 32 (4), pp. 470-480.

    Article  CAS  Google Scholar 

Download references

The authors acknowledge the computational assistance provided by Rajeev Kumar, a graduate student at the Indian Institute of Technology, Kharagpur in the preparation of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sen.

Additional information

Manuscript submitted July 6, 2012.

Appendices

Appendix I.A: Raw Material Analysis

Table I.A.1 Iron Ore, Sinter and Coke Composition

Appendix I.B: Hot Metal analysis

Table I.B.1 Hot Metal Composition

Appendix I.C: Coal composition

Table I.C.1 Ultimate Analysis of Coal (on Dry Mineral Matter Free Basis)
Table I.C.2 Proximate Analysis of Coal
Table I.C.3 Ash Analysis of Coal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, S., Roy, S.K. & Sen, P.K. Approach for Minimizing Operating Blast Furnace Carbon Rate Using Carbon-Direct Reduction (C-DRR) Diagram. Metall Mater Trans B 44, 20–27 (2013). https://doi.org/10.1007/s11663-012-9776-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9776-6

Keywords

Navigation