Skip to main content
Log in

Ladle Shroud as a Flow Control Device for Tundish Operations

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The performance characteristics of a tundish, such as the flotation of inclusions and slag entrainment, are largely influenced by the fluid-flow phenomena. Physical modeling in water is widely used to understand the fluid flows in a tundish and as a tool to improve, control, and design procedures for high-quality steel processing operations. These approaches were used to study the performance of fluid flow for a new design of ladle shroud. The new design for a dissipative ladle shroud (DLS) was studied, using a one-third scale, delta shaped, four-strand tundish. The results were compared with those achieved with the conventional ladle shroud. Different cases have been analyzed, including a conventional ladle shroud (LS) with a bare tundish and a tundish furnished with an impact pad. Similarly, the new design of the shroud (DLS) was studied under equivalent conditions. The physical experiments included the use of particle image velocimetry (PIV) and conductivity tracer techniques. The PIV measured the instantaneous velocities at the outlet of the DLS and the LS at different flow rates, showing the detailed jetting characteristics of water leaving the two types of ladle shroud. Residence time distribution (RTD) curves were also obtained for the different flow arrangements previously mentioned, and the dispersion of a colored dye tracer was observed at different intervals of time during tundish operation and analyzed using the video visualization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. A.V. Kuklev, V.V. Tinyakov, Y.M. Aizin, V.N. Gushchin, and V.A. Ulíyanov: Metallurgist, 2004, vol. 207, pp. 5–48.

    Google Scholar 

  2. R.I.L. Guthrie: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 417–37.

    Article  CAS  Google Scholar 

  3. A. Kumar, D. Mazumdar, and S.C. Koria: ISIJ Int., 2008, vol. 48, pp. 38–47.

    Article  CAS  Google Scholar 

  4. A. Aguilar-Corona, R.D. Morales, M. Díaz-Cruz, J. Palafox-Ramos, and L. García Demedices: Can. Metall. Q., 2003, vol. 42, pp. 455–64.

  5. L. Zhong, B. Li, Y. Zhu, R. Wang, W. Wang, and X. Zhang: ISIJ Int., 2007, vol. 47, pp. 88–94.

    Article  CAS  Google Scholar 

  6. K.J. Craig, D.J. de Kock, K.W. Makgata, and G.J. de Wet: ISIJ Int., 2001, vol. 4, pp. 1194–1200.

    Article  Google Scholar 

  7. C.M. Fan, R.J. Shie, and W.S. Hwang: Ironmaking Steelmaking, 2003, vol. 30, pp. 341–47.

    Article  CAS  Google Scholar 

  8. D. Bolger and K. Saylor: Steelmaking Proc., 1994, vol. 77, Iron and Steel Soc., Warrendale, PA, pp. 225–34.

  9. R.D. Morales, J. de Barreto, S. Lopez-Ramirez, J. Palafox-Ramos, and M. Diaz-Cruz: Mater. Sci. Eng., 2000, vol. 8, pp. 781–801.

    Google Scholar 

  10. S. Lopez-Ramirez, R.D. Morales, and J.A. Romero Serrano: Numer. Heat Trans., Part A, 2000, vol. 37, pp. 69–86.

    CAS  Google Scholar 

  11. A. Ramos-Banderas, R.D. Morales, L. García-Demedices, and M. Díaz-Cruz: ISIJ Int., 2003, vol. 43, pp. 653–62.

    Article  CAS  Google Scholar 

  12. A. Vargas-Zamora, R.D. Morales, M. Diaz-Cruz, J. Palafox-Ramos, and J. de Barreto-Sandoval: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 247–57.

    Article  CAS  Google Scholar 

  13. W. Jun, Z.M. Yong, Z. Hai-bing, and W. Ying: J. Iron Steel Res. Int., 2008, vol. 15, pp. 26–31.

    Article  Google Scholar 

  14. K. Chattopadhyay, M. Hasan, M. Isac, and R.I.L. Guthrie: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 225–33.

    Article  CAS  Google Scholar 

  15. A. Tripathi and S.K. Ajmani: ISIJ Int., 2005, vol. 45, pp. 1616–25.

    Article  CAS  Google Scholar 

  16. Q. Hou, Q. Yue, H, Wang, Z. Zou, and A. Yu: ISIJ Int., 2008, vol. 48, pp. 787–92.

    Article  CAS  Google Scholar 

  17. Q.F. Hou, H.Y. Wang, Q. Yue, Z.S. Zou, and A.B. Yu: Proc. Fifth Int. Conf. on CFD in the Process Industries, CSIRO, Melbourne, Australia, 2006, pp. 13–15.

  18. Q.F. Hou and Z. Zou: ISIJ Int., 2005, vol. 45, pp. 325–30.

    Article  CAS  Google Scholar 

  19. Y. Wang, Y. Zhong, B. Wang, Z.L.W. Ren, and Z. Ren: ISIJ Int., 2009, vol. 49, pp. 1542–50.

    Article  CAS  Google Scholar 

  20. G. Solorio-Diaz, R.D. Morales, J. Palafax-Ramos, L. Garcia-Demedices, and A. Ramos-Banderas: ISIJ Int., 2004, vol. 44, pp. 1024–32.

    Article  CAS  Google Scholar 

  21. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2010, vol. 50, pp. 331–48.

    Article  CAS  Google Scholar 

  22. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2011, vol. 51, pp. 759–68.

    Article  CAS  Google Scholar 

  23. P. Ramirez-Lopez and R.D. Morales: Ironmaking Steelmaking, 2006, vol. 33, pp. 157–68.

    Article  CAS  Google Scholar 

  24. S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, U.K., 2000, pp. 123–26.

    Book  Google Scholar 

  25. D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1999, vol. 39, pp. 524–47.

    Article  CAS  Google Scholar 

  26. Y. Sahai and T. Emi: Tundish Technology for Clean Steel Production, World Scientific Publication Co. Pte. Ltd., Hackensack, NJ, 2008.

  27. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu: Comput. Fluid, 1995, vol. 24, pp. 227–38.

    Article  Google Scholar 

  28. T.J. Chung: Computational Fluid Dynamics, Cambridge University Press, New York, NY, 2002, pp. 108–19.

    Book  Google Scholar 

Download references

Acknowledgments

The first author is very indebted to NSERC for research funding, the McGill Metals Processing Centre (MMPC) for research facilities, and the National Science and Technology Council (CONACyT) in Mexico for granting a scholarship to carry out his M.Eng. studies at McGill University. The other authors acknowledge the MMPC, CONACyT, and IPN for providing facilities for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Morales.

Additional information

Manuscript submitted November 5, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Higa, K., Guthrie, R.I.L., Isac, M. et al. Ladle Shroud as a Flow Control Device for Tundish Operations. Metall Mater Trans B 44, 63–79 (2013). https://doi.org/10.1007/s11663-012-9753-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9753-0

Keywords

Navigation