Skip to main content
Log in

Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Samples of graphene composites with matrix of copper were prepared by electrochemical codeposition from CuSO4 solution with graphene oxide suspension. The thermal conductivity of the composite samples with different thickness and that of electrodeposited copper was determined by the three-omega method. Copper-graphene composite films with thickness greater than 200 μm showed an improvement in thermal conductivity over that of electrolytic copper from 380 W/m.K to 460 W/m.K at 300 K (27 °C). The thermal conductivity of copper-graphene films decreased from 510 W/m.K at 250 K (–23 °C) to 440 W/m.K at 350 K (77 °C). Effective medium approximation (EMA) was used to model the thermal conductivity of the composite samples and determine the interfacial thermal conductance between copper and graphene. The values of interface thermal conductance greater than 1.2 GW/m2.K obtained from the acoustic and the diffuse mismatch models and from the EMA modeling of the experimental results indicate that the interface thermal resistance is not a limiting factor to improve the thermal conductivity of the copper-graphene composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.M. Garmire and M.T. Tavis: IEEE J. Quant. Electron., 1984, vol. QE-20, pp. 1277–80.

    Article  CAS  Google Scholar 

  2. J. Piprek, J.K. White, and A.J. Spring Thorpe: IEEE J. Quant. Electron., 2002, vol. 38, pp. 1253–59.

    Article  CAS  Google Scholar 

  3. V.O. Turin: Electron. Lett., 2004, vol. 40, pp. 81–83.

    Article  CAS  Google Scholar 

  4. G.A. Slack: J. Appl. Phys., 1964, vol. 35, pp. 3460–66.

    Article  CAS  Google Scholar 

  5. G.A. Slack: Phys. Rev., 1962, vol. 127, pp. 694–701.

    Article  CAS  Google Scholar 

  6. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen: Phys. Rev. Lett., 2001, vol. 87, pp. 215502-1–4.

  7. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweidebrhan, F. Miao, and C.N. Lau: Nano Lett., 2008, vol. 92, pp. 151911-1–3.

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Nano Lett., 2008, vol. 8, pp. 902–07.

    Article  CAS  Google Scholar 

  9. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, and L. Shi: Science, 2010, vol. 328, pp. 213–16.

    Article  CAS  Google Scholar 

  10. R. Prasher: Proc. IEEE, 2006, vol. 94, pp. 1571–87.

    Article  CAS  Google Scholar 

  11. A.N. Sruti and K. Jagannadham: J. Elect. Mater., 2010, vol. 39, pp. 1268–76.

    Article  CAS  Google Scholar 

  12. K. Jaganandham: J. Elect. Mater., 2011, vol. 40, pp. 25–34.

    Article  Google Scholar 

  13. K. Jagannadham: J. Electrochem. Soc., in press.

  14. S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Carbon, 2007, vol. 45, pp. 1558–65.

    Article  CAS  Google Scholar 

  15. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang: J. Amer. Chem. Soc., 2010, vol. 132, pp. 8180–86.

    Article  CAS  Google Scholar 

  16. E.E. Underwood: Applications of Quantitative Metallography, Mechanical Testing, Metals Handbook, 8th ed., vol. 8, ASM, Materials Park, OH, 1973, p. 37.

  17. D.G. Cahill: Rev. Sci. Instrum., 1990, vol. 61, pp. 802–08.

    Article  CAS  Google Scholar 

  18. J.H. Kim, A. Feldman, and D. Novotny: J. Appl. Phys., 1999, vol. 86, pp. 3959–63.

    Article  CAS  Google Scholar 

  19. Y.S. Touloukian and E.H. Buyco: Thermophysical Properties of Matter, The TPRC Data Series, Specific Heat of Metallic Elements and Alloys, vol. 4, and Specific Heat of Nonmetallic Solids, vol. 5, IFI/Plenum, New York, NY, 1970.

  20. J. Yang: in Thermal Conductivity: Theory, Properties, and Applications, T.M. Tritt, ed., Kluwer Academic/Plenum Press, New York, NY, 2004, p. 1.

  21. S. Ghosh, D.L. Nika, E.P. Pokatilov, and A.A. Balandin: New J. Phys., 2009, vol. 11, pp. 095012-1–19.

    Article  Google Scholar 

  22. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau: Appl. Phys. Lett., 2008, vol. 92, pp. 151911-1–3.

  23. D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin: Phys. Rev. B, 2009, vol. 79, pp. 155413-1–12.

  24. D.L. Nika, S. Ghosh, E.P. Pokatilov, and A.A. Balandin: Appl. Phys. Lett., 2009, vol. 94, pp. 203103-1–3.

  25. Z. Ghuo, D. Zhang, and X.G. Gong: Appl. Phys. Lett., 2009, vol. 95, pp. 163103-1–3.

  26. P.G. Klemens: Int. J. Thermophysics, 2001, vol. 22, pp. 265–75.

    Article  CAS  Google Scholar 

  27. P.G. Klemens and D.F. Pedraza: Carbon, 1994, vol. 32, pp. 735–41.

    Article  CAS  Google Scholar 

  28. A. Majumdar and P. Reddy: Appl. Phys. Lett., 2004, vol. 84, pp. 4768–71.

    Article  CAS  Google Scholar 

  29. D.L. Martin: Phys. Rev. B, 1973, vol. 8, pp. 5357–60.

    Article  CAS  Google Scholar 

  30. A.C. Anderson and R.E. Peterson: Phys. Lett., 1972, vol. 38A, pp. 519–20.

    Google Scholar 

  31. R. Viana, H. Godfrin, E. Lerner, and R. Rapp: Phys. Rev. B, 1994, vol. 50, pp. 4875–77.

    Article  CAS  Google Scholar 

  32. R.S. Deacon, K.C. Chuang, R.J. Nicholas, K.S. Novoselov, and A.K. Gein: Phys. Rev. B, 2007, vol. 76, pp. 08140 6-1–4.

  33. E.T. Swartz and R.O. Pohl: Rev. Mod. Phys., 1989, vol. 33, pp. 605–68.

    Article  Google Scholar 

  34. A. Minnich and G. Chen: Appl. Phys. Lett., 2007, vol. 91, pp. 073105-1–3.

  35. B.C. Gundrum, D.G. Cahill, and R.S. Averback: Phys. Rev. B, 2005, vol. 72, pp. 245426-1–5.

  36. A.J. Schmidt, K.C. Collins, A.J. Minnich, and G. Chen: J. Appl. Phys., 2010, vol. 107, pp. 104907-1–5.

  37. A.J. Schmidt, K.C. Collins, A.J. Minnich, and G. Chen: Rev. Sci. Instrum., 2008, vol. 79, pp. 114902-1–9.

  38. J.C. Duda, J.L. Smoyer, P.M. Norris, and P.E. Hopkins: Appl. Phys. Lett., 2009, vol. 95, pp. 031912-1–3.

Download references

Acknowledgment

This research is supported by National Science Foundation Grant CMMI #1049751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Additional information

Manuscript submitted August 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagannadham, K. Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets. Metall Mater Trans B 43, 316–324 (2012). https://doi.org/10.1007/s11663-011-9597-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9597-z

Keywords

Navigation