# Dynamic Model for Metal Cleanness Evaluation by Melting in a Cold Crucible

- First Online:

DOI: 10.1007/s11663-009-9226-2

- Cite this article as:
- Bojarevics, V., Pericleous, K. & Brooks, R. Metall and Materi Trans B (2009) 40: 328. doi:10.1007/s11663-009-9226-2

- 7 Citations
- 99 Views

## Abstract

Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 *μ*m are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 *μ*m, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.