Skip to main content
Log in

Thermodynamic properties and diffusion thermodynamic factors in B2-NiAl

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The vaporization of Ni-Al alloys has been investigated in the temperature range 1178 to 1574 K by Knudsen effusion mass spectrometry (KEMS). Thirteen different compositions have been examined in the composition range 38 to 57 at. pct Al. The partial pressures and thermodynamic activities of both Ni and Al have been evaluated both directly from the measured ion intensities for a component in both the alloy and the pure element, I +M /I +M °, and also from the ion intensity ratios of the alloy components, I +Al /I +Ni , by means of a Gibbs-Duhem integration. Reliable partial molar enthalpies and entropies for both components have been obtained by mass spectrometry for this system for the first time. Both properties are found to be nearly temperature independent over the wide temperature range investigated. Two separate component diffusion thermodynamic factors have also been evaluated for the first time by taking into account the large vacancy concentrations in these alloys. The enthalpy and Gibbs energy of mixing of stoichiometric Ni0.5Al0.5 at 1400 K, evaluated using the Gibbs-Duhem ion intensity ratio (GD-IIR) method, are −78.4±1.2 and −49.0 kJ/mol, respectively, with Al(liquid) and completely paramagnetic Ni(fcc, cpm) as reference states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM, Metals Park, OH, 1986, vol. 1, p. 140.

    Google Scholar 

  2. A. Steiner and K.L. Komarek: Trans. TMS-AIME, 1994, vol. 230, p. 786.

    Google Scholar 

  3. N.C. Oforka: Ind. J. Chem., 1986, vol. 25A, p. 1027.

    CAS  Google Scholar 

  4. J. Wang and H.J. Engell: Steel Res., 1992, vol. 63 (8), p. 320.

    CAS  Google Scholar 

  5. N.S. Jacobson: Applied Thermodynamic Synthesis Processing Materials (Proc. Symp.), P. Nash and B. Sundman, eds., TMS, Warrendale, PA, 1995, p. 319.

    Google Scholar 

  6. K. Rzyman, Z. Moser, R.E. Watson, and M. Weinert: J. Phase Equilibrium, 1998, vol. 19 (2), p. 106.

    Article  CAS  Google Scholar 

  7. A. Grün: Ph.D. Thesis, Institut für Metallkunde der Universität Stuttgart, Max-Planck-Institut für Metallforschung Stuttgart, Stuttgart, 1996.

    Google Scholar 

  8. V.N. Esk’kov, V.V. Samokhval, and A.A. Vecher: Russ. Metall., 1974, vol. 2, p. 118.

    Google Scholar 

  9. E.T. Henig and H.L. Lukas: Z. Metallkd., 1975, vol. 66, p. 98.

    CAS  Google Scholar 

  10. R.P. Santandrea, R.G. Behrens, and M.A. King: in Reaction Chemistry and High Temperature Ordered Intermetallic Alloys II, Materials Rezearch Society Symposia Proceedings, MRS, Pittsburgh, PA, 1987, vol. 81, p. 467.

    Google Scholar 

  11. S.V. Meschel and O.J. Kleppa: in Metallic Alloys: Experimental and Theoretical Perspectives, J.S. Faulkner, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Google Scholar 

  12. H.N. Su, P. Nash, and Z.K. Liu: in High Temperature Corrosion and Materials Chemistry IV; E. Opila, B. Pleraggi, P. Hou, D. Shifler, T. Marykyama and E. Wuchina, Proc. The Electrochem. Soc., Pennington, 2003, vol. 16, pp. 489–502.

  13. I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman: J. Alloys Compounds, 1997, vol. 247, pp. 20–30.

    Article  CAS  Google Scholar 

  14. W. Huang and Y.A. Chang: Intermetallics, 1998, vol. 6, pp. 487–98.

    Article  CAS  Google Scholar 

  15. F. Zhang, Y.A. Chang, Y. Du, S.L. Chen, and W.A. Oates: Acta Mater., 2002, vol. 51, p. 207.

    Article  Google Scholar 

  16. P.A. Korzhavyi, A.V. Ruban, A.Y. Lozovoi, YuKh. Vekilov, I.A. Abrikosov, and B. Johansson: Phys. Rev. B, 2000, vol. 61 (9), p. 6003.

    Article  ADS  CAS  Google Scholar 

  17. J. Mayer, M. Fähnle, and B. Meyer: Phys. Rev. B, 1999, vol. 59 (9), p. 6072.

    Article  ADS  Google Scholar 

  18. L. Bencze, D.D. Raj, D. Kath, W.A. Oates, J. Herrmann, L. Singheiser, and K. Hilpert: Metall. Mater. Trans. 2003, vol. 34 A, pp. 2409–19.

    Article  Google Scholar 

  19. K. Hilpert, M. Albers, M. Eckert, and D. Kath: in Structural Intermetallics, Proc. 2nd Int. Symp. on Structural Intermetallics, 1997, M.V. Nathal, R. Dariola, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 63–71.

    Google Scholar 

  20. K. Hilpert and K. Ruthardt: Ber. Bunsenges Phys. Chem., 1987, vol. 91, p. 724.

    CAS  Google Scholar 

  21. J.B. Mann: Proc. Int. Conf. on Mass Spectrometry, Kyoto, K. Ogata and T. Hayakawa, eds., University of Tokyo Press, Tokyo, 1970, p. 814, and personal communication.

    Google Scholar 

  22. V.S. Yungman, V.A. Medvedev, I.V. Veits, and G.A. Bergman: IVTAN-THERMO—A Thermodynamic Database and Software System for the Personal Computer, CRC Press and Begel House, Boca Raton, FL, 1993.

    Google Scholar 

  23. A. Neckel: in Thermochemistry of Alloys, H. Brodowsky and H. Schaller, eds., Kluwer, London, 1989, p. 221.

    Google Scholar 

  24. L. Bencze, K. Hilpert, and W.A. Oates: unpublished research, 2003.

  25. H.P. Scholz: Ph.D. Thesis, University of Göttingen, Göttingen, Germany, 2001.

    Google Scholar 

  26. L.M. Pike, I.M. Anderson, G.T. Liu, and Y.A. Chang: Acta Mater., 2002, vol. 50, p. 3859.

    Article  CAS  Google Scholar 

  27. M. Kogachi and T. Tanahashi: Scripta Mater., 1996, vol. 34, pp. 243–48.

    Article  CAS  Google Scholar 

  28. X. Ren and K. Otsuka: Phil. Mag. A, 2000, vol. 80, p. 467.

    ADS  CAS  Google Scholar 

  29. Y.A. Chang and J.P. Neumann: Progr. Solid State Chem., 1982, vol. 14, p. 221.

    Article  CAS  Google Scholar 

  30. L.S. Darken: Trans. AIME, 1948, vol. 175, p. 184.

    Google Scholar 

  31. S. Liubich, S. Dorfman, D. Fuks, and H. Mehrer: Mater. Sci. Eng., 1998, vol. A258, p. 65.

    CAS  Google Scholar 

  32. S. Dorfman, D. Fuks, and D. Mehrer: Eng. Phys. J., 1998, vol. 33, p. 175.

    ADS  Google Scholar 

  33. T. Ikeda, H. Numaknia, and N. Koina: Acta Mater., 1998, vol. 18, p. 6605.

    Article  Google Scholar 

  34. D. Raj, L. Bencze, D. Kath, W.A. Oates, J. Herrmann, L. Singheiser, and K. Hilpert: Intermetallics, 2003, vol. 11, pp. 1119–24.

    Article  CAS  Google Scholar 

  35. Z. Qin and G.E. Murch: Phil. Mag. A, 1995, vol. 71, p. 323.

    CAS  Google Scholar 

  36. A.B. Lidiard: Phil. Mag. A, 1996, vol. 74, p. 43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bencze, L., Raj, D.D., Kath, D. et al. Thermodynamic properties and diffusion thermodynamic factors in B2-NiAl. Metall Mater Trans B 35, 867–876 (2004). https://doi.org/10.1007/s11663-004-0081-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0081-x

Keywords

Navigation