Skip to main content
Log in

Microstructure Investigation of Cu-Ni Base Al2O3 Nanocomposites: From Nanoparticles Synthesis to Consolidation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Different compositions of Cu-Ni/Al2O3 nanocomposites were prepared by a chemical-based synthesis of co-formed oxides (CuO-NiO-Al2O3) nanoparticles followed by selective hydrogen reduction of the Cu and Ni oxides and finally by consolidation into pellets. The synthesized composites with both phases (metallic and oxide) containing nanoparticles in the 5 to 60 nm range have been systematically produced. Micro- and nanoscale characterization techniques were extensively employed in all stages of the process. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses have shown a heterogeneous distribution of chemical elements resulting in the formation of Cu- and Ni-rich nanoparticles containing Al2O3 phase in a controlled low volume fraction, which later mostly dispersed between the metallic particle and, to a lesser extent, within metallic particles. After consolidation, under uniaxial pressure followed by sintering, the compacted nanocomposite observed in the transmission electron microscope (TEM) revealed that the Al2O3 have been more homogeneously distributed as such: the majority of it at the newly formed grain boundaries of the consolidated pellet and a small part of it within the metallic Cu-Ni matrix. Microhardness measurements demonstrate that dispersion of Al2O3 was successfully achieved as reinforcement phase, yielding up to 100 pct increase in hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I. Omar, F. Zucchi, and G. Trabanelli: Surf Coat Technol., 1986, vol. 29, pp. 141–51.

    Article  Google Scholar 

  2. L. Durivault, O. Brylev, D. Reyter, M. Sarrazin, D. Bélanger, and L. Roué: J. Alloys Compd., 2007, vol. 432, pp. 323–32.

    Article  Google Scholar 

  3. P.H.K. Charan and G.R. Rao: Micropor. Mesopor. Mater., 2014, vol. 200, pp. 101–09.

    Article  Google Scholar 

  4. J. Chatterjee, M. Bettge, Y. Haik, and C. Chen: J. Mag. Mag. Mater., 2005, vol. 293, pp. 303–09.

    Article  Google Scholar 

  5. J.L. Strudel: Physical Metallurgy, Elsevier Science B.V., Amsterdam, 1996, pp. 2106–06.

    Google Scholar 

  6. F. Ren, A. Zhi, D. Zhang, B. Tian, A.A. Volinsky, and X. Shen: J. Alloys Compd., 2015, vol. 633, pp. 323–28.

    Article  Google Scholar 

  7. H. Nasiri, J.V. Khaki, and S.M. Zebarjad: J. Alloys Compd., 2011, vol. 509, pp. 5305–08.

    Article  Google Scholar 

  8. Y. Wu, X. Liu, J. Zhang, J. Qin, and C. Li: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1544–07.

    Article  Google Scholar 

  9. V. Rajkovic, D. Bozic, A. Devecerski, and M. Jovanovic: Mater. Charact., 2012, vol. 67, pp. 129–37.

    Article  Google Scholar 

  10. W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, and X.B. Zhang: Carbon N. Y., 2003, vol. 41, pp. 215–22.

    Article  Google Scholar 

  11. S.R. Dong, J.P. Tu, and X.B. Zhang: Mater. Sci. Eng. A., 2001, vol. 313, pp. 83–87.

    Article  Google Scholar 

  12. P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong, and H.S. Kim: J. Mater. Proces. Technol., 2007, vol. 187–188, pp. 318–20.

    Article  Google Scholar 

  13. E. Brocchi, M. Motta, and P.K. Jena: Metall. Trans. B., 2004, vol. 35B, pp. 1107–12.

    Google Scholar 

  14. M.A. Cangiano, M.W. Ojeda, A.C. Carreras, J. González, and M. Ruiz: Mater. Charact., 2010, vol. 61, pp. 1135–46.

    Article  Google Scholar 

  15. A. Carreras, M. Cangiano, M.W. Ojeda, and M. Ruiz: Mater. Charact., 2015, vol. 101, pp. 40–48.

    Article  Google Scholar 

  16. E. Brocchi, F. Moura, and D. Macedo: Miner. Process. Extr. Metall., 2009, vol. 118, pp. 44–48. doi:10.1179/174328508X375386

    Google Scholar 

  17. E. Brocchi, R. Navarro, M. Motta, F. Moura, and G. Solórzano: Mater. Chem. Phys., 2013, vol. 140, pp. 273–83.

    Article  Google Scholar 

  18. O. Cortez, F. Moura, E. Brocchi, R. Navarro, and R. Souza: Metall. Mater. Trans. B., 2014, vol. 45, pp. 2033–39.

    Article  Google Scholar 

  19. E. Brocchi, M.S. Motta, I.G. Solórzano, P.K. Jena, and F.J. Moura: J. Metast. Nanocryst. Mater., 2004, vol. 22, pp. 77–82.

    Article  Google Scholar 

  20. F. Shehata, M. Abdelhameed, A. Fathy, and M. Elmahdy: Open J. Met., 2011, vol. 01, pp. 25–33.

    Article  Google Scholar 

  21. G. Ferk, J. Stergar, M. Drofenik, D. Makovec, A. Hamler, Z. Jagličić, and I. Ban: Mater. Lett., 2014, vol. 124, pp. 39–42.

    Article  Google Scholar 

  22. Z. Huaa, Z. Cao, Y. Dengc, Y. Jianga, and S Yanga: Mater. Chem. Phys., 2011, vol. 126, pp. 542–45.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian funding agencies CNPQ, CAPES, and FAPERJ for financial support and scholarships. Also, the access to the electron microscopy facilities at the LabNano/CBPF, Rio de Janeiro, is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, M.I., Suguihiro, N.M., Brocchi, E.A. et al. Microstructure Investigation of Cu-Ni Base Al2O3 Nanocomposites: From Nanoparticles Synthesis to Consolidation. Metall Mater Trans A 48, 2643–2653 (2017). https://doi.org/10.1007/s11661-017-4000-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4000-6

Keywords

Navigation