Skip to main content
Log in

Tool Steel Heat Treatment Optimization Using Neural Network Modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] J. Galán, L. Samek, P. Verleysen, K. Verbeken and Y. Houbaert: Revista de Metalurgia, 2012, Vol 48, pp. 118-131.

    Article  Google Scholar 

  2. [2] N. Baluch, Z.M. Udin and C.S. Abdullah: Engineering, Technology & Applied Science Research, 2014, Vol. 4, pp. 686-689.

    Google Scholar 

  3. [3] P. Groche and M. Christiany: Wear, 2013, Vol. 302, pp. 1279-1285.

    Article  Google Scholar 

  4. [4] Jing-Yuan Li, Yu-Lai Chen and Jian-Hua Huo: Materials Science and Engineering: A, 2015, Vol. 640, pp. 16–23.

    Article  Google Scholar 

  5. [5] D. Mellouli, N. Haddar, A. Köster and H.F. Ayedi: Engineering Failure Analysis, 2014, Vol. 45, pp. 85–95.

    Article  Google Scholar 

  6. [6] R. Ebara: Int. J. Fatigue, 2010, Vol. 32, pp. 830-840.

    Article  Google Scholar 

  7. [7] B. Podgornik and V. Leskovšek: Metall. Mater. Trans. A, 2013, Vol. 44, pp. 5694-5702.

    Article  Google Scholar 

  8. [8] Xu Liujie, Xing Jiandong, Wei Shizhong, Zhang Yongzhen and Long Rui: Materials and Design, 2007, Vol. 28, pp. 1425–1432.

    Article  Google Scholar 

  9. [9] M. Col, H.M. Ertunc and M. Yilmaz: Materials and Design, 2007, Vol. 28, pp. 488–495.

    Article  Google Scholar 

  10. [10] V. Leskovšek, B. Šuštaršič and G. Jutriša: J. Mater. Process. Technol., 2006, Vol. 178, pp. 328-334.

    Article  Google Scholar 

  11. [11] P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon and C. Levaillant: Acta Mater., 2007, Vol. 55, pp. 4877-4889.

    Article  Google Scholar 

  12. P.M. Novotny and M.K. Banerjee: Mater. Sci. Mater. Eng., 2016. DOI:10.1016/B978-0-12-803581-8.02534-0

  13. [13] S. Kheirandish and A. Noorian: Journal of Iron and Steel Research, International, 2008, Vol. 15, pp. 61-66.

    Article  Google Scholar 

  14. [14] A. Eser, C. Broeckmann and C. Simsir: Computational Materials Science, 2016, Vol. 113, pp. 280–291.

    Article  Google Scholar 

  15. [15] Xie Hao-jie, Wu Xiao-chun and Min Yeng-an: Journal of Iron and Steel Research, International, 2008, Vol. 15, pp. 56-61.

    Article  Google Scholar 

  16. [16] R.A. Mesquita and H.-J. Kestenbach: Materials Science and Engineering: A, 2012, Vol. 556, pp. 970-973.

    Article  Google Scholar 

  17. [17] R.A. Mesquita, C.A. Barbosa, E.V. Morales and H.-J. Kestenbach: Metall. Mater. Trans. A, 2011, Vol. 42A, pp. 461-472.

    Article  Google Scholar 

  18. [18] Z. Guo, N. Saunders, J.P. Schille and A.P. Miodownik: Materials Science and Engineering: A, 2009, Vol. 499, pp. 7-13.

    Article  Google Scholar 

  19. [19] A. Powar and P. Date: Materials Science and Engineering: A, 2015, Vol. 628, pp. 89–97.

    Article  Google Scholar 

  20. [20] C.J. Small and N. Saunders: MRS Bulletin, 1999, Vol. 24, pp. 22-26.

    Article  Google Scholar 

  21. [21] C. Simsir and C.H. Gür: Computational Materials Science, 2008, Vol. 44, pp. 588–600.

    Article  Google Scholar 

  22. [22] A. Eser, C. Broeckmann and C. Simsir: Computational Materials Science, 2016, Vol. 113, pp. 292-300.

    Article  Google Scholar 

  23. [23] W. Paszkowicz: Materials and Manufacturing Processes, 2009, Vol. 24, pp. 174-197.

    Article  Google Scholar 

  24. [24] W. Paszkowicz: Materials and Manufacturing Processes, 2013, Vol. 28, pp. 708-725.

    Article  Google Scholar 

  25. [25] R.S. Khabbaz, B.D. Manshadi, A. Abedeian and R. Mahmudi: Materials&Design, 2009, Vol. 30, pp. 687-697.

    Article  Google Scholar 

  26. S.S. Shivathaya: Material design in steel making utilising mathematical modelling, knowledge-based and fuzzy logic approaches, PhD Thesis, University of Wollongong, Wollongong, 1997.

  27. [27] A.P. Ihom and A. Offiong: European Journal of Engineering and Technology, 2015, Vol. 3, pp. 40-54.

    Google Scholar 

  28. [28] L.A. Dobrzanski, J. Trzaska and A.D. Dobrzanska-Danikiewicz: Reference Module in Materials Science and Materials Engineering: Comprehensive Materials Processing, 2014, Vol. 2, pp. 161–198, DOI:10.1016/B978-0-08-096532-1.00215-6

    Google Scholar 

  29. [29] N.S. Reddy, J. Krishnaiah, Seong-Gu Hong and Jae Sang Lee: Materials Science and Engineering: A, 2009, Vol. 508, pp. 93-105

    Article  Google Scholar 

  30. [30] B. Lotfi and P. Beiss: Materials and Design, 2013, Vol. 50, pp. 440–445.

    Article  Google Scholar 

  31. [31] W. Sha and K.L. Edwards: Materials & Design, Vol. 28, 2007, pp. 1747-1752

    Article  Google Scholar 

  32. [32] I. Belič, Neural networks and static modelling, in: M. Elhevnawi, M. Mysara (Eds.), Recurrent neural networks and soft computing, InTech, Rijeka, 2012, pp. 3-22.

    Google Scholar 

  33. [33] Liujie Xua, Jiandong Xing, Shizhong Wei, Yongzhen Zhang and Rui Long: Materials Science and Engineering: A, 2006, Vol. 433, pp. 251–256.

    Article  Google Scholar 

  34. [34] T. Bhattacharyy, S.B. Singh, S. Sikdar(Dey), S. Bhattacharyy, W. Bleck and D. Bhattacharjee: Materials Science and Engineering: A, 2013, Vol. 565, pp. 148–157.

    Article  Google Scholar 

  35. [35] Z. Sterjovski, D. Nolan, K.R. Carpenter, D.P. Dunne and J. Norrish: Journal of Materials Processing Technology, 2005, Vol. 170, pp. 536–544.

    Article  Google Scholar 

  36. [36] G. Bloch and T. Denoeux: ISA Transactions, 2003, Vol. 42, pp. 39-51

    Article  Google Scholar 

  37. [37] W. Sitek and J. Trzaska: Journal of Achievements in Materials and Manufacturing Engineering, 2011, Vol. 45, pp. 71-78.

    Google Scholar 

  38. [38] N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim and C.S. Lee: Computational Materials Science, 2015, Vol. 107, pp. 175-183.

    Article  Google Scholar 

  39. [39] J. Kusiak and R. Kuziak: Journal of Materials Processing Technology, 2002, Vol. 127, pp. 115-121.

    Article  Google Scholar 

  40. [40] S. Krajewski and J. Nowacki: Archives of Civil and Mechanical Engineering, 2014, Vol. 14, pp. 278-286.

    Article  Google Scholar 

  41. [41] S.M.K. Hosseini, A. Zarei-Hanzaki, M.J. Yazdan Panah and S. Yue: Materials Science and Engineering: A, 2004, Vol. 374, pp. 122-128.

    Article  Google Scholar 

  42. [42] R. Esmaeili and M.R. Dashtbayazi: Expert Systems With Applications, 2014, Vol. 41, pp. 5817-5831.

    Article  Google Scholar 

  43. [43] I. Holzer and E. Kozeschnik: Materials Science and Engineering: A, 2010, Vol. 527, pp. 3546-3551.

    Article  Google Scholar 

  44. [44] Z. Guo and W. Sha: Computational Materials Science, 2004, Vol. 29, pp. 12-28.

    Article  Google Scholar 

  45. [45] J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei and Z. Jiang: Computational Materials Science, 2014, Vol. 92, pp. 47-56.

    Article  Google Scholar 

  46. [46] S. Malinov and W. Sha: Materials Science and Engineering: A: 2004, Vol. 365, pp. 202-211

    Article  Google Scholar 

  47. [47] O. Palavar, D. Ozyurek and A. Kalyon: Materials & Design, 2015, Vol. 82, pp. 164-172.

    Google Scholar 

  48. [48] Shen Wei, Zhao Tingshi, Gao Daxing, Liu Dunkang, Li Poliang and Qui Xiaoyun: Engineering Fracture Mechanics, 1982, Vol. 16, pp. 69–82.

    Article  Google Scholar 

  49. [49] B. Ule, V. Leskovšek and B. Tuma: Engineering Fracture Mechanics, 2000. Vol. 65, pp. 559–572.

    Article  Google Scholar 

  50. [50] B. Podgornik, V. Leskovšek and B. Žužek: Materials Performance and Characterization, 2014, Vol. 3, pp. 87-103.

    Google Scholar 

  51. https://www.cheshireeng.com/Neuralyst/; accessed July 2016

  52. B. Podgornik, B. Žužek, F. Kafexhiu and V. Leskovšek: Tribol. Lett., 2016. DOI:10.1007/s11249-016-0695-6.

  53. [53] R.A. Mesquita and H.-J. Kestenbach: Materials Science and Engineering: A, 2011, Vol. 528, pp. 4856-4859.

    Article  Google Scholar 

  54. [54] You Fa Yin and Roy G Faulkner: Materials Science and Engineering: A, 2003, Vol. 344, pp. 92–102.

    Article  Google Scholar 

  55. [55] B. Podgornik, V. Leskovsek, F. Tehovnik and J. Burja: Surface and Coatings Technology, 2015, Vol. 261, pp. 253-261.

    Article  Google Scholar 

  56. [56] D.T. Llewellyn and R.C. Hudd: Steels – Metallurgy & Applications, 3rd edition, Butterworth-Heinemann, Oxford, 1998

    Google Scholar 

Download references

Acknowledgment

Research in this work was conducted within the Slovenian Research Agency research group P2-0050 (fracture toughness measurement) and P2-0056 (ANN modeling).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Podgornik.

Additional information

Manuscript submitted May 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgornik, B., Belič, I., Leskovšek, V. et al. Tool Steel Heat Treatment Optimization Using Neural Network Modeling. Metall Mater Trans A 47, 5650–5659 (2016). https://doi.org/10.1007/s11661-016-3723-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3723-0

Keywords

Navigation