Skip to main content

Advertisement

Log in

Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66−x CrNiB x Si (x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66−x CrNiB x Si (x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] G. Jha, S. Das, S. Sinha, A. Lodh and A. Haldar: Mater. Sci. Eng. A, 2013, vol. 561, pp. 394-402.

    Article  Google Scholar 

  2. [2] S.S. Sohn, H. Song, B.C. Suh, J.H. Kwak, B.J. Lee, N.J. Kim and S. Lee: Acta Mater., 2015, vol. 96, pp. 301-10.

    Article  Google Scholar 

  3. [3] H. Aydin, E. Essadiqi, I.H. Jung and S. Yue: Mater. Sci. Eng. A, 2013, vol. 564, pp. 501-8.

    Article  Google Scholar 

  4. [4] S.S. Sohn, K. Choi, J.H. Kwak, N.J. Kim and S. Lee: Acta Mater., 2014, vol. 78, pp. 181-9.

    Article  Google Scholar 

  5. [5] H. Springer, M. Belde and D. Raabe: Mater. Des., 2016, vol. 90, pp. 1100-9.

    Google Scholar 

  6. [6] I. Gutierrez-Urrutia and D. Raabe: Scripta Mater., 2013, vol. 68, pp. 343-7.

    Article  Google Scholar 

  7. [7] Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma and C.T. Liu: Acta Mater., 2013, vol. 61, pp. 5996-6005.

    Article  Google Scholar 

  8. [8] C. Wang, H. Ding, M. Cai and B. Rolfe: Mater. Sci. Eng. A, 2014, vol. 610, pp. 436-44.

    Article  Google Scholar 

  9. [9] M. Askari-Paykani, H.R. Shahverdi and R. Miresmaeili: Mater. Sci. Eng. A, 2016, vol. 668, pp. 188-200.

    Article  Google Scholar 

  10. [10] K. Kumara, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, B.K. Dutta and R.K. Sinha: Procedia Eng., 2014, vol. 86, pp. 899-909.

    Article  Google Scholar 

  11. [11] B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3 rd ed., Pearson education international, New York, 2001, pp. 347-61.

    Google Scholar 

  12. [12] Mahmohd Y. Demeri: Advanced High-Strength Steels: Science, Technology, and Application, 1st ed., ASM International, Ohio, 2013, pp. 59-65.

    Google Scholar 

  13. Steel Market Development Institute, Great design in STEEL seminar, Upper and lower body structure design strategies implements on the 2011 Chevrolet Volt. http://www.autosteel.org/~/media/Files/Autosteel/Great%20Designs%20in%20Steel/GDIS%202011/02%20-%20Steve%20McCallum%20-%20Monte%20Taylor%20-%20Volt%20Presentation.pdf

  14. [14] I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449-62.

    Article  Google Scholar 

  15. [15] J.E. Jin and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 527, pp. 157-61.

    Article  Google Scholar 

  16. [16] H. Ding, H. Ding, D. Song, Z. Tang, and P. Yang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 868-73.

    Article  Google Scholar 

  17. [17] Z.H. Cai, H. Ding, X. Xue, J. Jiang, Q.B. Xin and R.D.K. Misra: Scripta Mater., 2013, vol. 68, pp. 865-8.

    Article  Google Scholar 

  18. [18] A. Ramazani, B. Bruehl, T. Gerber, W. Bleck and U. Prahl: Mat. Des., 2014, vol. 57, pp. 479-86.

    Article  Google Scholar 

  19. [19] C.J. Martis, S.K. Putatunda and J. Boileau: Mater. Des., 2013, vol. 46, pp. 168-74.

    Article  Google Scholar 

  20. [20] W. Wang, M. Li, C. He, X. Wei, D. Wang and H. Du: Mater. Des., 2013, vol. 47, pp. 510-21.

    Article  Google Scholar 

  21. [21] C.L. Lin, C.G. Chao, J.Y. Juang, J.M. Yang and T.F. Liu: J. Alloy Compd., 2014, vol. 586, pp. 616-20.

    Article  Google Scholar 

  22. [22] A.S. Hamada, A.P. Kisko, P. Sahu and L.P. Karjalainen: Mater. Sci. Eng. A, 2015, vol. 628, pp. 154-9.

    Article  Google Scholar 

  23. [23] A. Röttger, J. Lentz and W. Theisen: Mater. Des., 2015, vol. 88, pp. 420-9.

    Google Scholar 

  24. [24] I. Mejia, G. Altamirano, A. Bedolla-Jacuinde and J. Cabrera: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5165–76.

    Article  Google Scholar 

  25. [25] E.J. Lavernia and T.S. Srivatsan: J. Mater. Sci., 2010, vol. 45, pp. 287–325.

    Article  Google Scholar 

  26. [26] J.M. Vitek, A. Dasgupta adn S.A. David: Metall. Mater. Trans. A, 1983, vol. 14, pp.1833-41.

    Article  Google Scholar 

  27. [27] J.V. Wood and R.W.K. Honeycombe: Mater. Sci. Eng. A, 1979, vol. 38, pp. 217–26.

    Article  Google Scholar 

  28. [28] J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma and W.H. Tong: J. Crys. Growth, 2008, vol. 311, pp. 132–6.

    Article  Google Scholar 

  29. [29] M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.

    Article  Google Scholar 

  30. [30] D.V. Porter, K.E. Easterling and M. Sherif: Phase Transformations in Metals and Alloys, 3 rd ed., CRC Press, USA, 2009, pp. 110-82.

    Google Scholar 

  31. [31] A. Gupta, A.K. Bhargava, R. Tewari and A.N. Tiwari: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4248-56.

    Article  Google Scholar 

  32. [32] P.E. Busby, M.E. Warga and C. Wells: Trans. AIME, 1953, vol. 197, pp. 1463-8.

    Google Scholar 

  33. [33] A. Wasilkowska, P. Tsipouridis, E.A. Werner, A. Pichler and S. Traint: J. Mater. Process Tech., 2014, vol. 58, pp.633-6.

    Google Scholar 

  34. [34] J. Galán, L. Samek, P. Verleysen, K. Verbeken and Y. Houbaert: Revista de Metal, 2012, vol. 48, pp. 118-31.

    Article  Google Scholar 

  35. [35] J. Mahieu, J. Maki, B.C. De Cooman and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2573-80.

    Article  Google Scholar 

  36. [36] K. Sugimoto, M. Misu, M. Kobayashi and H. Shirasawa: ISIJ Int., 1993, vol. 33, pp. 775-82.

    Article  Google Scholar 

  37. [37] S.O. Kruijver, L. Zhao, J. Sietsma, S.E. Offerman, N.H.V. Dijk, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen and S. van der Zwaag: J. Phys. IV, 2003, vol. 104, pp. 499–502.

    Google Scholar 

  38. [38] D.A. Hughes: Acta Metall. Mater., 1993, vol. 41, pp. 1421-30.

    Article  Google Scholar 

  39. [39] D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, 1989, vol. 113, pp.1-41.

    Article  Google Scholar 

  40. [40] J. Doo Yoo and K.T. Park: Mater. Sci. Eng. A, 2008, vol. 496, pp. 417-24.

    Article  Google Scholar 

  41. [41] N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shahverdi.

Additional information

Manuscript submitted April 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari-Paykani, M., Shahverdi, H.R. & Miresmaeili, R. Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66−x CrNiB x Si (x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels. Metall Mater Trans A 47, 5423–5437 (2016). https://doi.org/10.1007/s11661-016-3713-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3713-2

Keywords

Navigation