Skip to main content
Log in

Analysis of Deformation in Inconel 718 When the Stress Anomaly and Dynamic Strain Aging Coexist

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation in Inconel 718 in the presence of combined effects of the stress anomaly and dynamic strain aging is analyzed according to an internal state variable model formulation. The analysis relies on the availability of experimental data in regimes of behavior where both the stress anomaly and dynamic strain aging are absent. A model that introduces two internal state variables—one characterizing interactions of dislocations with solute atoms and one characterizing interaction of dislocations with precipitates—is shown to adequately describe the temperature and strain-rate dependence of the yield stress in several superalloy systems. Strain hardening is then added with a third internal state variable to enable description of the full stress–strain curve. These equations are extrapolated into regimes where the stress anomaly and dynamic strain aging are present to identify signatures of their effects and to compare to similar analyses in a variety of metal systems. Dynamic strain aging in Inconel 718 follows similar trends to those observed previously. The magnitude of the stress anomaly tracks measurements of stress vs test temperature in pure Ni3Al. Several trends in the strain-rate sensitivity of elevated temperature deformation in superalloys are identified based on limited availability of measurements over a wide range of strain rates or tests using strain-rate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. An arbitrary decision has been made to plot s i vs \( \sigma_{\varepsilon } \)(see Eq. [10]) rather than \( \hat{\sigma }_{\varepsilon } \).

  2. It is also possible that the estimate at 673K (400°C) is of a different population than all of the other estimates, since the line through the low-temperature estimates approximately intersects all but the estimate at 673K (400°C).

  3. In fact, fortuitously, the sign of the effect of the differences in temperature in these two datasets is opposite the sign of the effect of the differences in strain rate.

  4. The relation between the offset stresses (open boxes) and temperature was not specified in Figure 12, but a linear dependence would appear to offer a good first approximation.

References

  1. The Minerals, Metals, and Materials Society: http://www.materialmoments.org/index.html, 2007.

  2. Special Metals Corporation: Inconel Alloy 718, Publication No. SMC-045. http://www.specialmetals.com/documents/Inconel%20alloy%20718.pdf, 2007.

  3. Nickel Development Institute: High-Temperature High-Strength Nickel Base Alloys, Supplement No. 393. http://www.stainless-steel-world.net/pdf/393.pdf 1995.

  4. S. Miura, S. Ochiai, Y. Oya, Y. Mishima, and T. Suzuki, in MRS Symposium Proceedings, vol. 133, C.T. Lie, A. Taub, N.S. Stoloff, and C.C. Koch, eds., Materials Research Society, Pittsburgh, 1989, p. 241.

  5. P. Veyssière and G. Saada: in Dislocations in Solids, vol. 10, F.R.N. Nabarro and M.S. Duesbery, eds., North-Holland, Amsterdam, 1996, p. 254.

  6. P. B. Hirsch, J. Phy. III, 1991, vol. 1, pp. 989-996.

    Google Scholar 

  7. R. A. Mulford and U. F. Kocks, Acta Metal., 1979, vol. 27, pp. 1125 – 1134.

    Article  Google Scholar 

  8. H. Hänninen, M. Ivanchenko, Y. Yagodzinskyy, V. Nevdacha, U. Ehrnstén, and P. Aaltonen: in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System—Water Reactors, 2005, T.R. Allen, P.J. King, and L. Nelson, eds., The Minerals, Metals, and Materials Society, 2005, pp. 1423–30.

  9. R.A. Mulford, U.F. Kocks: Scripta Metal., 1979, vol. 13, pp. 729-732.

    Article  Google Scholar 

  10. P. S. Follansbee, Fundamentals of strength – principles, experiment, and applications of an internal state variable constitutive formulation, John Wiley & Sons, Hoboken, NJ, 2014.

    Book  Google Scholar 

  11. P.S. Follansbee: ASME J. Eng. Mater. Technol., 2012, vol. 134, pp. 410071–4100710.

    Article  Google Scholar 

  12. P. S. Follansbee, Materials Sciences and Applications, 2015, vol. 6, pp. 457-463.

    Google Scholar 

  13. Special Metals: Inconel Alloy 625. http://www.specialmetals.com/documents/Inconel%20alloy%20625.pdf.

  14. Special Metals: Inconel Alloy 22, Publication No. SMC-049, http://www.specialmetals.com/documents/Inconel%20alloy%2022.pdf

  15. E.W. Huang: PhD Dissertation, University of Tennessee, Knoxville, TN, December. http://trace.tennessee.edu/utk_graddiss/608.

  16. Hastelloy C-22 Alloy, Haynes Corrosion-Resistant Alloys, H-2019F. http://www.haynesintl.com/pdf/h2019.pdf

  17. P. Chaudhury and D. Zhao: Atlas of Formability, Hastelloy C-22, National Center for Excellence in Metalworking Technology (NCEMT), September, 1992.

  18. R.A. Lane and C. Fink: Report AMMT-35, Advanced Materials, Manufacturing and Testing Information Analysis Center (AMMTIAC), 2009.

  19. D. Joshi: MS Dissertation, Oklahoma State University, 2004.

  20. ASM International: Atlas of Stress-Strain Curves, 2nd ed., ASM International, Metals Park, 2002, p. 654.

  21. ASM International: Atlas of Stress-Strain Curves, 2nd ed., ASM International, Metals Park, 2002, p. 656

  22. S.A. Nalawade, M. Sundararaman, R. Kishore, J.G. Shah, Scripta Mater., 2008, vol. 59, 2008, pp. 991-994.

    Article  Google Scholar 

  23. C. T. Sims and W. C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972, p. 123.

    Google Scholar 

  24. R. C. Reed, The Superalloys – Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006, p. 238.

    Google Scholar 

  25. W.-S. Lee, C.-F. Lin, T.-H. Chen, and H.-W. Chen, Mater. Trans. Jpn Inst. Met., 2011, vol. 52(9), pp. 1734-1740.

    Google Scholar 

  26. S. Dike: MS Dissertation, Case Western Reserve University, May, 2010.

  27. U. F. Kocks, R. E. Cook, and R. A. Mulford, Acta Metal., 1985, vol. 33, pp. 623-638.

    Article  Google Scholar 

  28. D. Golberg, M. Demura, and T. Hirano, Acta Mater., 1988, vol. 46, pp. 2695.

    Article  Google Scholar 

  29. M. Demura, D. Golberg, T. and Hirano, Intermetallics, 2007, vol. 15, pp. 1322-1331.

    Article  Google Scholar 

  30. P. H. Thornton, R. G. Davies, and T.L. Johnston, Metal. Trans., 1970, vol. 1, pp. 207 - 218.

    Article  Google Scholar 

  31. W. L. Mankins, J. C. Hosier, and T. H. Bassford, Metal. Trans., 1974, vol. 5, pp. 2579-2590.

    Article  Google Scholar 

  32. T. M. Pollock and A. S. Argon, Acta Metal., 1992, vol. 40, pp. 1 – 30.

    Article  Google Scholar 

  33. P. S. Follansbee and U. F. Kocks, Acta Metal., 1988, vol. 36, no. 1, pp. 81 – 93.

    Article  Google Scholar 

  34. A. Vattré, B. Devincre, and A. Roos, Intermetallics, 2009, vol. 17, pp. 988-994.

    Article  Google Scholar 

Download references

Acknowledgment

The author is grateful for the support of Saint Vincent College in performance of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Follansbee.

Additional information

Manuscript submitted February 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Follansbee, P.S. Analysis of Deformation in Inconel 718 When the Stress Anomaly and Dynamic Strain Aging Coexist. Metall Mater Trans A 47, 4455–4466 (2016). https://doi.org/10.1007/s11661-016-3609-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3609-1

Keywords

Navigation