Skip to main content
Log in

Processing, Microstructure, and Oxidation Behavior of Iron Foams

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With its historically long popularity in major structural applications, the use of iron (Fe) has also recently begun to be explored as an advanced functional material. For this purpose, it is more advantageous to use Fe as a porous structure, simply because it can provide a greater surface area and a higher reaction rate. This study uses a freeze-casting method, which consists of simple and low-cost processing steps, to produce Fe foam with a mean pore size of 10 μm. We examine the influences of various parameters (i.e., mold bottom temperature, powder content, and sintering time) on the processing of Fe foam, along with its oxidation kinetics at 823 K (550 °C) with various heat-treatment times. We confirm that Fe2O3 and Fe3O4 oxide layers are successfully formed on the surface of Fe foam. With the Fe oxide layers as an active anode material, the Fe foam can potentially be used as a three-dimensional anode current collector for an advanced lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer, and S.R. Arwade: J. Constr. Steel Res., 2012, vol. 71, pp. 1–10.

    Article  Google Scholar 

  2. P.A. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, and G.X. Xie: Sci. Total Environ., 2012, vol. 424, pp. 1–10.

    Article  Google Scholar 

  3. A.B. Cundy, L. Hopkinson, and R.L.D. Whitby: Sci. Total Environ., 2008, vol. 400, pp. 42–51.

    Article  Google Scholar 

  4. J. Chen, L.N. Xu, W.Y. Li, and X.L. Gou: Adv. Mater., 2005, vol. 17, pp. 582–586.

    Article  Google Scholar 

  5. S. Jin, H. Deng, D. Long,, X. Liu, L. Zhan, X. Liang, W. Qiao, and L. Ling: J. Power Sources, 2011, vol. 196, pp. 3887–3893.

    Article  Google Scholar 

  6. J. Capek, and D. Vojtech: Mater. Sci. Eng., 2014, vol. 43, pp. 494–501.

    Article  Google Scholar 

  7. M. Peustera, C. Hessea, T. Schlooa, C. Finkb, P. Beerbauma, and C.V. Schnakenburg: biomaterials, 2006, vol. 27, pp. 4955–4962.

    Article  Google Scholar 

  8. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, 2000.

    Google Scholar 

  9. J. Banhart: Prog. Mater Sci., 2001, vol. 46, pp. 559–632.

    Article  Google Scholar 

  10. L.P. Lefebvre, J. Banhart, and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775–787.

    Article  Google Scholar 

  11. C. Park, and S.R. Nutt: Mater. Sci. Eng. A, 2001, vol. 229, pp. 68–74.

    Article  Google Scholar 

  12. T. Murakami, K. Ohara, T. Narushima, and C. Ouchi: Mater. Trans., 2007, vol. 48, pp. 2937–2944.

    Article  Google Scholar 

  13. T. Murakami, T. Akagi, and E. kasai: Proc. Mater. Sci., 2014, vol. 4, pp. 27–32.

  14. S.T. Szyniszewski, B.H. Smith, J.F. Hajjar, B.W. Schafer, and S.R. Arwade: Mater. Des., 2014, vol. 54, pp. 1083–1094.

    Article  Google Scholar 

  15. T. Ikeda, T. Aoki, and H Nakajima: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 77–86.

    Article  Google Scholar 

  16. M. Vesenjak, A. Kovacic, M. Tane, M. Borovinsek, H. Nakajima, and Z.R. Ren: Comput. Mater. Sci, 2012, vol. 65, pp. 37–43.

    Article  Google Scholar 

  17. S. Deville: Adv. Eng. Mater., 2008, vol. 10, pp. 155–69.

    Article  Google Scholar 

  18. S. Deville, E. Saiz, and A.P. Tomsia: Acta Mater., 2007, vol. 55, pp. 1965–74.

    Article  Google Scholar 

  19. U.G.K. Wegst, M. schecter, A.E. Donius, and P.M. Hunger: Phil. Trans. R. Soc. A, 2010, vol. 368, pp. 2099–121.

  20. Y. Chino, and D.C. Dunand: Acta Mater., 2008, vol. 56, pp. 105–113.

    Article  Google Scholar 

  21. S. Deville, E. Saiz, and A.P. Tomsia: Biomaterials, 2006, vol. 27, pp. 5480–5489.

    Article  Google Scholar 

  22. M.E. Launey, E. Munch, D.H. Alsem, H.B. Barth, E. Saiz, A.P. Tomsia, and R.O. Richie: Acta Mater., 2009, vol. 57, pp. 2919–2932.

    Article  Google Scholar 

  23. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Science, 2006, vol. 311, pp. 515–518.

    Article  Google Scholar 

  24. H.-Y. Lin, Y.-W. Chen, and C. Li: Thermochim. Acta, 2003, vol. 400, pp. 61–67.

    Article  Google Scholar 

  25. W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz: Appl. Catal., A, 2007, vol. 326, pp. 17–27.

    Article  Google Scholar 

  26. W.L. Li, K. Lu, J.Y. Walz: Int. Mater. Rev., 2012, vol. 57, pp. 37–60.

    Article  Google Scholar 

  27. H. Park, M. Choi, H. Choe, and D.C. Dunand: Mater. Char., 2016, in review.

  28. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li: Nature, 2012, vol. 528, pp. 539–543.

    Article  Google Scholar 

  29. N.O. Shanti, K. Araki, and J.W. Halloran: J. Am. Ceram. Soc., 2006, vol. 89, pp. 2444–2447.

    Article  Google Scholar 

  30. H. Jo, M. Kim, H. Choi, Y. Sung, H. Choe, and D.C. Dunand: Metall. Mater. Trans. E, 2016, vol. 3, pp. 46–54.

    Google Scholar 

  31. Y.M. Lin, P.R. Abel, A. Heller, and C.B. Mullins: J. Phys. Chem. Lett., 2011, vol. 2, pp. 2885–2891.

    Article  Google Scholar 

  32. J.H. Um, H. Park, Y.H. Cho, M. Glazer, D.C. Dunand, H. Choe, and Y.E. Sung: RSC Adv., 2014, vol. 4, pp. 58059–58063.

    Article  Google Scholar 

  33. X. Xu, R. Cao, S. Jeong, and J. Cho: Nano Lett., 2012, vol. 12, pp. 4988–4991.

    Article  Google Scholar 

  34. E.A. Brandes and G.B. Brook: Smithells metals reference book, 7th ed., Butterworth-Heinemann, USA, 1992.

    Google Scholar 

  35. H.J.T. Ellingham: J. Soc. Chem. Ind., 1944, vol. 63, pp. 125–160.

    Article  Google Scholar 

  36. R.Y. Chen, and W.Y.D. Yuen: Oxid. Met., 2003, vol. 59, pp. 433–468.

    Article  Google Scholar 

  37. N. Bertrandl, C. Desgranges, D. Gauvain, D. Monceau, and D. Poquillon: Mater. Sci. Forum., 2004, vol. 461–464, pp. 591–598.

    Article  Google Scholar 

  38. G.B. Gibbs, M.R. Wootton, W.R. Price, and K.E. Hodgson: Oxid. Met., 1973, vol. 7, pp. 185–200.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Priority Research Center Program through the National Research Foundation (NRF) of Korea (2012-0006680). HC also acknowledges the support from the Basic Science Research Program (2014R1A2A1A11052513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeman Choe.

Additional information

Manuscript submitted September 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Noh, Y., Choi, H. et al. Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metall Mater Trans A 47, 4760–4766 (2016). https://doi.org/10.1007/s11661-016-3601-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3601-9

Keywords

Navigation