Skip to main content
Log in

Fatigue Properties of Cast Magnesium Wheels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin–Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens: JOM, 2007, vol. 59, pp. 48–57.

    Article  Google Scholar 

  2. A.A. Luo: Int. Mater. Reviews, 2004, vol. 49, pp. 13–30.

    Article  Google Scholar 

  3. H. Mayer, M. Papakyriacou, B. Zettl, and S.E. Stanzl-Tschegg: Int. J. Fatigue, 2003, vol. 25, pp. 245–56.

    Article  Google Scholar 

  4. M.F. Horstemeyer, N. Yang, K. Gall, D.L. McDowell, J. Fan, and P.M. Gullett: Acta Mater., 2004, vol. 52, pp. 1327–36.

    Article  Google Scholar 

  5. P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai: Mater. Sci. Eng. A, 2008, vol. 486, pp. 183–92.

    Article  Google Scholar 

  6. P.H. Fu, L.M. Peng, H.Y. Jiang, L. Ma, and C.Q. Zhai: Mater. Sci. Eng. A, 2008, vol. 496, pp. 177–88.

    Article  Google Scholar 

  7. Z.M. Li, A.A. Luo, Q.G. Wang, L.M. Peng, P.H. Fu, and G.H. Wu: Mater. Sci. Eng. A, 2013, vol. 564, pp. 450–60.

    Article  Google Scholar 

  8. Z.M. Li, Q.G. Wang, A.A. Luo, P.H. Fu, L.M. Peng, Y.X. Wang, and G.H. Wu: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5202–15.

    Article  Google Scholar 

  9. L.M. Peng, P.H. Fu, Z.M. Li, H.Y. Yue, D.Q. Li, and Y.X. Wang: Mater. Sci. Eng. A, 2014, vol. 611, pp. 170–6.

    Article  Google Scholar 

  10. L.M. Peng, P.H. Fu, Z.M. Li, Y.X. Wang, and H.Y. Jiang: J. Mater. Sci., 2014, vol. 49, pp. 7105–15.

    Article  Google Scholar 

  11. Z.M. Li, Q.G. Wang, A.A. Luo, P.H. Fu, and L.M. Peng: Inter. J. Fatigue, 2015, vol. 80, pp. 468–76.

    Article  Google Scholar 

  12. J.W. Chang, L.M. Peng, X.W. Guo, A. Atrens, and P.H. Fu: J. Appl. Electrochem., 2008, vol. 38, pp. 207–14.

    Article  Google Scholar 

  13. J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng, and W.J. Ding: Electrochim. Acta, 2007, vol. 52, pp. 3160–67.

    Article  Google Scholar 

  14. J.W. Chang, P.H. Fu, X.W. Guo, and L.M. Peng: Corros. Sci., 2007, vol. 49, pp. 2612–27.

    Article  Google Scholar 

  15. Z.M. Li, Q.G. Wang, A.A. Luo, L.M. Peng, P.H. Fu, and Y.X. Wang: Mater. Sci. Eng., 2013, vol. 582, pp. 170–7.

    Article  Google Scholar 

  16. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Metall. Mater. Trans. A, 2008, vol. 39, pp. 3014–26.

    Article  Google Scholar 

  17. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Int. J. Fatigue, 2009, vol. 31, pp. 726–35.

    Article  Google Scholar 

  18. Q.Z. Li, Q Yu, J.X. Zhang, and Y.Y. Jiang: Scripta Mater., 2010, vol. 62, pp. 778–81.

    Article  Google Scholar 

  19. K. Gall, M.F. Horstemeyer, B.W. Degner, D.L. McDowell, and J. Fan: Int. J. Fract., 2001, vol. 108, pp. 207–33.

    Article  Google Scholar 

  20. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: Scripta Mater., 2007, vol. 56, pp. 1–4.

    Article  Google Scholar 

  21. Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, H.Y. Jiang, and G.H. Wu: Mater. Sci. Eng. A, 2013, vol. 579, pp. 170–9.

    Article  Google Scholar 

  22. Q.G. Wang, C.J. Davidson, J.R. Griffiths, and P.N. Crepeau: Metall. Mater. Trans. B, 2006, vol. 44, pp. 887–95.

    Article  Google Scholar 

  23. Q.G. Wang and P.E. Jones: Metall. Mater. Trans. B, 2007, vol. 38, pp. 615–21.

    Article  Google Scholar 

  24. D.K. Xu, L. Liu, B.Y. Xu, and E.H. Han: Acta Mater., 2008, vol. 56, pp. 985–94.

    Article  Google Scholar 

  25. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.

    Article  Google Scholar 

  26. P.S. De, R.S. Mishra, and C.B. Smith: Scripta Mater., 2009, vol. 60, pp. 500–3.

    Article  Google Scholar 

  27. Z.M. Li, P.H. Fu, L.M. Peng, E.P. Becker, and G.H. Wu: Mater. Sci. Eng. A, 2013, vol. 565, pp. 250–7.

    Article  Google Scholar 

  28. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 85–97.

    Article  Google Scholar 

  29. R.A. Siddiqui, S.A. Abdul-Wahab, and T. Pervez: Mater. Des., 2008, vol. 29, pp. 70–9.

    Article  Google Scholar 

  30. M.E. Burba, M.J. Caton, S.K. Jha, and C.J. Szczepanski: Metal. Mater. Trans A, 2013, vol. 44, pp. 4954–67.

    Article  Google Scholar 

  31. C.J. Davidson, J.R. Griffiths, and A.S. Machin: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 223–30.

    Article  Google Scholar 

  32. Q.G. Wang and P. Jones: SAE Int. J. Mater. Manuf., 2011, vol. 4, pp. 289–97.

    Article  Google Scholar 

  33. Z.M. Li, Q.G. Wang, A.A. Luo, L.M. Peng and P. Zhang: Mater. Sci. Eng. A, 2015, vol. 647, pp. 113–26.

    Article  Google Scholar 

  34. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: J. Alloys Comp., 2007, vol. 427, pp. 316–23.

    Article  Google Scholar 

  35. S.L. Sin, A. Elsayed, and C. Ravindran: Int. Mater. Rev., 2013, vol. 58, pp. 419–36.

    Article  Google Scholar 

  36. A. Sarkar, B.K. Kumawat, and J.K. Chakravartty: J. Nucl. Mater., 2015, vol. 462, pp. 273–9.

    Article  Google Scholar 

  37. N. Khutia, P.P. Dey, S.K. Paul, and S. Tarafder: Mech. Mater., 2013, vol. 65, pp. 88–102.

    Article  Google Scholar 

  38. Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2887–99.

    Article  Google Scholar 

  39. F. Thomas, U. Noster, B. Scholtes, and P. Uggowitzer: Proceedings of the 2nd International Light Metals Technology Conference, Switzerland, 2005.

  40. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, and G.Y. Li: Mater. Sci. Eng. A, 2008, vol. 494, pp. 397–400.

    Article  Google Scholar 

  41. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 68–95.

    Article  Google Scholar 

  42. X.Y. Lou, M. Li, P.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plasti., 2007, vol. 23, pp. 44–86.

    Article  Google Scholar 

  43. Y.J. Wu, R. Zhu, J.T. Wang, and W.Q. Ji: Scripta Mater., 2010, vol. 63, pp. 1077–80.

    Article  Google Scholar 

  44. P.H. Fu, L.M. Peng, J.F. Nie, H.Y. Jiang, L. Ma, and L. Bourgeois: Mater. Sci. Forum., 2011, vol. 690, pp. 230–33.

    Article  Google Scholar 

  45. C.H. Cáceres and B.I. Selling: Mater Sci Eng A, 1996, vol. 220, pp. 109–16.

    Article  Google Scholar 

  46. Q.G. Wang: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2707–18.

    Article  Google Scholar 

  47. Q.G. Wang, C.H. Cáceres, and J.R. Griffiths: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2901–12.

    Article  Google Scholar 

  48. S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Acta Metall. Mater., 1994, vol. 42, pp. 3493–502.

    Article  Google Scholar 

  49. J. Man, M. Petrenec, K. Obrtlík, and J. Polák: Acta Mater., 2004, vol. 52, pp. 5551–61.

    Article  Google Scholar 

  50. J. Man, K. Obrtlík, C. Blochwitz, and J. Polák: Acta Mater., 2002, vol. 50, pp. 3767–80.

    Article  Google Scholar 

  51. J. Polák, J. Man, T. Vystavel, and M. Petrenec: Mater. Sci. Eng. A, 2009, vol. 517, pp. 204–11.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out as a collaborative research project supported by General Motors and Shanghai Jiao Tong University. This work was also supported by the Project Funded by China Postdoctoral Science Foundation (2015M571562). The authors are grateful to Drs. Anil Sachdev and Yucong Wang (GM) and Professor Wengjiang Ding (SJTU) for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Li.

Additional information

Manuscript submitted November 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Luo, A.A., Wang, Q. et al. Fatigue Properties of Cast Magnesium Wheels. Metall Mater Trans A 47, 4239–4257 (2016). https://doi.org/10.1007/s11661-016-3550-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3550-3

Keywords

Navigation