Skip to main content
Log in

Microstructure Evolution of Biphasic TiNi1+x Sn Thermoelectric Materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of thermal treatment on the microstructure of biphasic materials comprising half-Heusler (hH) and full-Heusler (fH) phases, as well as on their associated thermal conductivity, are discussed. The focus of this study was on a biphasic hH/fH alloy of nominal stoichiometry TiNi1.2Sn, synthesized by containerless (magnetic levitation) induction melting. The alloy samples were exposed to various heat treatments to generate microstructures containing second-phase precipitates ranging in size from ~10 nm to a few micrometers. The materials were characterized with regard to morphology, size, shape, and orientation relationship of the fH and hH phases, both of which were present as precipitates within larger regions of the counterpart phase. The solidification path of the alloy and its implications for the subsequent microstructure evolution during heat treatment were elucidated, and relationships with the ensuing thermal conductivity were characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. There is some confusion in Ref. [26] about the nature of the reaction at the intersection of the fH, hH, and Ti5Sn3 primary crystallization surfaces, but the microstructure is consistent with the scenario described in Figure 13(a). Note, however, that a true ternary peritectic reaction would involve 4 phases, not 3.

References

  1. T.M. Tritt: Annu. Rev. Mater. Res., 2011, vol. 41, pp. 433–448.

    Article  Google Scholar 

  2. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen: Energy Environ. Sci., 2011, vol. 5, pp. 5147-5162.

    Article  Google Scholar 

  3. A. Shakouri: Annu. Rev. Mater. Res., 2011, vol. 41, pp. 399-431.

    Article  Google Scholar 

  4. J. Yang, T. Caillat: MRS Bulletin, 2006, vol. 31, pp. 224-229.

    Article  Google Scholar 

  5. L.E. Bell: Science, 2014, vol. 321, pp. 1457-1461.

    Article  Google Scholar 

  6. D.M. Rowe, G. Min: J. Power Sources, 1998, vol. 73, pp. 193-198.

    Article  Google Scholar 

  7. W.J. Xie, A. Weidenkaff, M.B. Tang, Q. Zhang, J. Poon, T.M. Tritt: Nanomaterials, 2012, vol. 2, pp. 379-412.

    Article  Google Scholar 

  8. C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner: Phys. Rev. B, 1999, vol. 59, pp. 8615-8621.

    Article  Google Scholar 

  9. K. Mastronardi, D. Young, C.C. Wang, P. Khalifah, R.J. Cava, A.P. Ramirez: Appl. Phys. Lett., 1999, vol. 74, pp. 1415-1417.

    Article  Google Scholar 

  10. H. Hohl, A.P. Ramirez, W. Kaefer, K. Fess, Ch. Thurner, Ch. Kloc, E. Bucher: Mater. Res. Soc. Symp. Proc., 1997, vol. 478, pp. 109-114.

    Article  Google Scholar 

  11. P. Qiu, X. Huang, X. Chen, L. Chen: J. Appl. Phys., 2009, vol. 16, pp. 103703.

    Article  Google Scholar 

  12. S. Sakurada, N. Shutoh: Appl. Phys. Lett., 2005, vol. 86, pp. 082105.

    Article  Google Scholar 

  13. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, E. Bucher: J. Phys.: Condens. Matter, 1999, vol. 11, pp. 1697-1709.

    Article  Google Scholar 

  14. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna: Adv. Mater., 2007, vol. 19, pp. 1043-1053.

    Article  Google Scholar 

  15. Y. Kimura, Y. Tamura, T. Kita: Appl. Phys. Lett., 2008, vol. 92, pp. 012105.

    Article  Google Scholar 

  16. H. Hazama, M. Matsubara, R. Asahi, T. Takeuchi: J. Appl. Phys., 2011, vol. 110, pp. 063710.

    Article  Google Scholar 

  17. J.P.A. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, P.F.P. Poudeu: J. Am. Chem. Soc., 2011, vol. 133, pp. 18843-18852.

    Article  Google Scholar 

  18. J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, M.G. Kanatzidis: Chem. Mater., 2006, vol. 18, pp. 4993-4995.

    Article  Google Scholar 

  19. M.G. Kanatzidis: Chem. Mater., 2010, vol. 22, pp. 648-659.

    Article  Google Scholar 

  20. S.V. Faleev, F. Léonard: Phys. Rev. B, 2008, vol. 77, pp. 214304.

    Article  Google Scholar 

  21. J.E. Douglas, C.S. Birkel, N. Verma, V.M. Miller, M.-S. Miao, G.D. Stucky, T.M. Pollock, R. Seshadri: J. Appl. Phys., 2014, vol. 115, pp. 043720.

    Article  Google Scholar 

  22. P.L. Dulong, A.T. Petit: Annales de chimie et de physique, 1819, vol. 10, pp. 395-413.

    Google Scholar 

  23. M.B. Tang, J.T. Zhao: J. Alloys Compd., 2009, vol. 475, pp. 5-8.

    Article  Google Scholar 

  24. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, Z. Ren: Adv. Energy Mater., 2011, vol. 1, pp. 643-647.

    Article  Google Scholar 

  25. W.J. Xie, Y.G. Yan, S. Zhu, M. Zhou, S. Populoh, K. Galazka, S.J. Poon, A. Wiedenkaff, J. He, X. Tanga, T.M. Tritt: Acta Mater., 2013, vol. 61, pp. 2087-2094.

    Article  Google Scholar 

  26. M. Gürth, A. Grytsiv, J. Vrestal, V.V. Romaka, G. Giester, E. Bauer, P. Rogl: RSC Advances, 2015, vol. 5, pp. 92270-92291.

    Article  Google Scholar 

  27. D. Jung, K. Krosaki, C. Kim, H. Muta, S. Yamanaka: J. Alloys Compd., 2010, vol. 489, pp. 328-331.

    Article  Google Scholar 

  28. P. Larson, S.D. Mahanti, M.G. Kanatzidis: Phys. Rev. B, 2000, vol. 62, pp. 12754-12762.

    Article  Google Scholar 

  29. V.V. Romaka, P. Rogl, L. Romaka, Y. Stadnyk, N. Melnychenko, A. Grytsiv, M. Falmbigl, N. Skryabina: J. Solid State Chem., 2013, vol. 197, pp. 103-112.

    Article  Google Scholar 

  30. Y.W. Chai, Y. Kimura: Acta Mater., 2013, vol. 61, pp. 6684-6697.

    Article  Google Scholar 

  31. Y. Wang, A. Khachaturyan: Philos. Mag. A, 1995, vol. 72, pp. 1161-1171.

    Article  Google Scholar 

  32. P.W. Voorhees, G.B. McFadden, W.C. Johnson: Acta Metall. Mater., 1992, vol. 40, pp. 2979-2992.

    Article  Google Scholar 

  33. R. Schneck, S.I. Rokhlin, M.P. Dariel: Metall. Trans. A, 1985, vol. 16A, pp. 197-202.

    Article  Google Scholar 

  34. C. Zener: Phys. Rev., 1947, vol. 71, pp. 846-851.

    Article  Google Scholar 

  35. P. Hermet, K. Niedziolka, P. Jund: RSC Advances, 2013, vol. 3, pp. 22176-22184.

    Article  Google Scholar 

  36. X. Li, K. Thornton, Q. Nie, P.W. Voorhees, J.S. Lowengrub: Acta Mater., 2004, vol. 52, pp. 5829-5843.

    Article  Google Scholar 

  37. L.-D. Zhao, V.P. Dravid, M.G. Kanatzidis: Energy Environ. Sci., 2014, vol. 7, pp. 251-268.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the MRSEC Program of the National Science Foundation through DMR-1121053 and made use of the central facilities of the Materials Research Laboratory supported under the same grant. The Materials Research Laboratory is a member of the NSF-supported Materials Research Facilities Network. The NSF Graduate Research Fellowship program provided support for JED under Grant DMR 1144085. NV gratefully acknowledges technical assistance of J. Hwang (UCSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Douglas.

Additional information

Manuscript submitted February 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Douglas, J.E., Krämer, S. et al. Microstructure Evolution of Biphasic TiNi1+x Sn Thermoelectric Materials. Metall Mater Trans A 47, 4116–4127 (2016). https://doi.org/10.1007/s11661-016-3549-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3549-9

Keywords

Navigation