Skip to main content
Log in

Effect of Crystal Orientation on Nanoindentation Behavior in Magnesium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of crystal orientation on nanoindentation behavior at both quasi-static and high strain rates was investigated using single-crystalline magnesium oriented in basal and prismatic configurations. Both the basal and prismatic planes had similar activation volumes, 55 and 73b 3 for deformation at room temperature, as well as a small temperature dependence up to 423 K (150 °C). Microstructural observations beneath the indentations revealed that {\( 10\bar{1}2 \)} type deformation twins were formed in both orientations irrespective of testing temperature. With twins forming beneath the indenter and multiple orientations of loading, it is believed that cross-slip and/or multiple slip are likely rate-controlling for global deformation, which also aligns with observations on nanoindentation of polycrystalline coarse-grained magnesium. The locations of the twins were consistent with expectations based on indentation mechanics as assessed by finite element simulations. The finite element simulations also predicted that an indenter tip with a shaper tip radius would tend to promote {\( 10\bar{1}2 \)} twins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] B. C. Wonsiewicz and W. A. Backofen: Trans. Metall. Sco. AIME. 1967, vol. 239, pp.1422-1431.

    Google Scholar 

  2. [2] H. Yohinaga and R. Horiuchi: Mater. Trans. JIM. 1963, vol. 4, pp.134-141.

    Google Scholar 

  3. [3] R. E. Reed-Hill and W. D. Robertson: Acta Metall. 1957, vol. 5, pp. 728-737.

    Article  Google Scholar 

  4. [4] M. R. Barnett, Z. Keshavarz, A. G. Beer and D. Atweel: Acta Mater. 2004, vol. 52, pp.5093-5104.

    Article  Google Scholar 

  5. [5] T. Tsuru and Y. Shibutani: Phy. Rev. B, 2007, vol. 75, 035415.

    Article  Google Scholar 

  6. [6] G. Ziegenhain, H. M. Urbassek and A. J. Hartmaier: J. Appl. Phy. 2010, vol. 107, 061807.

    Article  Google Scholar 

  7. [7] X. H. Liu, J. F. Gu, Y. Shen and C. F. Chen: Scripta Mater. 2008, vol. 58, pp.564-567.

    Article  Google Scholar 

  8. [8] M. A. Tschopp, D. E. Spearot and D. L. McDowell: Mod. Sim. Mater. Sci. 2007, vol. 15, pp.693-710.

    Article  Google Scholar 

  9. [9] J. D. Kiely and J. E. Houston: Phys. Rev. B, 1998, vol. 57, 12588.

    Article  Google Scholar 

  10. [10] K. J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh: Phys. Rev. B, 2003, vol. 67, 104105.

    Article  Google Scholar 

  11. [11] S. G. Corcoran, R. J. Colton, E. T. Lilleodden and W. W. Gerberich: Phys. Rev. B, 1997, vol. 55, 16057.

    Article  Google Scholar 

  12. [12] J. K. Mason, A. C. Lund and C. A. Schuh: Phy. Rev. B, 2006, vol. 73, 054102.

    Article  Google Scholar 

  13. [13] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos and S. Suresh: Acta Mater. 2000, vol. 48, pp.2277-2295.

    Article  Google Scholar 

  14. [14] J. Li, Y. Ni, H. Wang and J. Mei: Nanoscale. Res. Letts. 2010, vol. 5, pp.420-432.

    Article  Google Scholar 

  15. [15] J. H. Shin, S. H. Kim, T. K. Ha, K. H. Oh, I. S. Choi and H. N. Han: Scripta Mater. 2013, vol. 68, pp.483-486.

    Article  Google Scholar 

  16. [16] D. Catoor, Y. F. Gao, J. Geng, M. J. N. V. Prasad, E. G. Herbert, K. S. Kumar, G. M. Pharr and E. P. Gorge: Acta Mater. 2013, vol. 61, pp.2953-2965.

    Article  Google Scholar 

  17. [17] H. Somekawa and C. A. Schuh: Scripta Mater. 2013, vol. 68, pp.416-419.

    Article  Google Scholar 

  18. [18] H. Somekawa and C. A. Schuh: J. Mater. Res. 2012, vol. 27, pp.1205-1213.

    Article  Google Scholar 

  19. [19] C. M. Byer, B. Li, B. Cao and K. T. Ramesh: Scripta Mater. 2010, vol. 62, pp.536-539.

    Article  Google Scholar 

  20. [20] E. Lilleodden: Scripta Mater. 2010, vol. 62, pp.532-535.

    Article  Google Scholar 

  21. [21] J. Ye, R. K. Mishra, A. K. Sachdev and A. M. Minor: Scripta Mater. 2011, vol. 64, pp.292-295.

    Article  Google Scholar 

  22. [22] H. Kitahara, T. Mayama, K. Okumura, Y. Tadano, M. Tsushida and S. Ando: Acta Mater, 2014, vol. 78, pp.290-300.

    Article  Google Scholar 

  23. [23] T. Guo, F. Siska and M. R. Barnett; Scripta Mater. 2015, vol. 110, pp.10-13.

    Article  Google Scholar 

  24. [24] C. Zambaldi, C. Zehnder and D. Rabbe; Acta Mater. 2015, vol. 91, pp.267-288.

    Article  Google Scholar 

  25. [25] J. Alkorta, J. M. Martinez-Esnaola and J. G. Sevillano: J. Mater. Res. 2008, vol. 23, pp.182-188.

    Article  Google Scholar 

  26. [26] W. H. Poisl, W. C. Oliver and B. D. Fabes: J. Mater. Res. 1995, vol. 10, pp.2024-2032.

    Article  Google Scholar 

  27. [27] J. R. Trelewicz and C. A. Schuh: Appl. Phys. Letts. 2008, vol. 93, 171916.

    Article  Google Scholar 

  28. [28] G. Constantinides, C. A. Tweedie, N. Savva, J. F. Smith and K. J. VanVliet: Exp. Mech. 2009, vol. 49, pp.511-521.

    Article  Google Scholar 

  29. M.M. Avedesian, and H. Baker, eds., ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.

  30. [30] H. Somekawa and T. Mukai: Scripta Mater. 2005, vol. 53, pp.541-545.

    Article  Google Scholar 

  31. [31] W. F. Gale and T. C. Totemeier; Smithells Metals Reference Book, eight edition, Elsevier, Oxford, 2004.

    Google Scholar 

  32. ABAQUS/Explicit ver 63 (2003) User’s Manual, Theory Manual, Habbit, Karlsson & Sorensen, Inc, Providence.

    Google Scholar 

  33. [33] H. Somekawa, T. Inoue and T. Mukai: Mater. Sci. Eng. 2010, vol. A527, pp.1761-1768.

    Article  Google Scholar 

  34. [34] A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, vol. 17, pp.1339-1350.

    Article  Google Scholar 

  35. [35] A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, Vol. 17, pp.1351-1356.

    Article  Google Scholar 

  36. [36] H. J. Frost and M. F. Ashby, Deformation-mechanism Map, Pergaman Press, Oxford, 1982.

    Google Scholar 

  37. [37] W. F. Sheely and R. R. Nash: Trans. Metall. Soc. AIME. 1960, vol. 218, pp.416-423.

    Google Scholar 

  38. P. Wardflynn, J. Mote and J. E. Dorn: Trans. Metall. Soc. AIME. 1961, vol. 221, pp.1148-1154.

    Google Scholar 

  39. [39] S. Gollapudi, M. A. Azeem, T. Tweari and U. Ramamurty: Scripta Mater. 2011, vol. 64, pp.189-192.

    Article  Google Scholar 

  40. [40] S. J. Lloyd, J. M. Molina-Aldareguia and W. J. Clegg: Philo. Mag. 2002, vol. 82A, pp.1963-1970.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A. F. Schwartzman (Massachusetts Institute of Technology) for his help with the dynamic indentation method and Dr. T. Inoue (National Institute for Materials Science) for his contractive discussion about FE simulation. This work was supported at MIT by the US Army Research Office through the Institute for Solider Nanotechnologies and by the JSPS Grant-in-Aid (C) No. 25420765.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hidetoshi Somekawa or Christopher A. Schuh.

Additional information

Manuscript submitted June 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somekawa, H., Schuh, C.A. Effect of Crystal Orientation on Nanoindentation Behavior in Magnesium. Metall Mater Trans A 47, 3227–3234 (2016). https://doi.org/10.1007/s11661-016-3479-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3479-6

Keywords

Navigation