Skip to main content
Log in

Conventional and Spark Plasma Sintered Ba0.8Pb0.2TiO3 Nano Ceramics: Structural, Dielectric, and Ferroelectric Properties

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ba0.8Pb0.2TiO3 nanocrystalline ferroelectric ceramics were prepared by high-energy ball mill followed by spark plasma sintering and conventional sintering techniques. Sintering behavior, microstructure, dielectric properties, and ferroelectric properties were investigated by XRD, SEM, dielectric spectrometer, and ferroelectric P-E loop tracer. It was found that the densification process was greatly enhanced during SPS. The sintering temperature was 673 K (400 °C) lower and the microstructure was much finer than that of conventionally sintered ceramics, and dense compacts with a higher density of over 99 pct were obtained. The average grain size in the conventionally sintered samples is up to about 200 nm, while that in the spark plasma sintered prepared sample is only about 100 nm. The room temperature and transition temperature dielectric constant of spark plasma-sintered samples is higher than that of the conventionally sintered sample. There is a noticeable difference in processing time between conventional sintering and spark plasma sintering, and the latter offers potential advantage in time saving also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. M Tokita, Mater. Sci. Forum, 308–311 83 (1999)

    Article  Google Scholar 

  2. J R Groza and A Zavaliangos, Mater. Sci. Eng., A287 171 (2000)

    Article  Google Scholar 

  3. 3. J Zhang, A Zavaliangos and J.R. Groza, P/M Sci. Technol. Briefs, 5 17 (2003)

    Google Scholar 

  4. 4. R G Duan, G D Zhan, J D Kuntz, B H Kear, A K Mukherjee, Mater. Sci. Eng., A373 180 (2004)

    Article  Google Scholar 

  5. 5. M Nygren, Z J Shen, Solid State Sci., 5 125 (2003)

    Article  Google Scholar 

  6. 6.Z Zhao, V Buscaglia, P Bowen, M Nygren, Key Eng. Mater., 264/268 2297-2300 (2004)

    Article  Google Scholar 

  7. 7. C K Kim, H S Lee, S Y Shin, J C Lee, D H Kim, S Lee, et al., Mater. Sci. Eng., A406 293 (2005)

    Article  Google Scholar 

  8. V R Mudinepalli, W C Lin, S H Song, B S Murty (2015) J. Electron. Mater., 44: 4308-15

    Article  Google Scholar 

  9. V R Mudinepalli, L Feng, M P Reddy, W C Lin, B S Murty (2016) Indian J. Phys., 90 131–38

    Article  Google Scholar 

  10. 10. S H Song, Q S Zhu, L Q Weng, V R Mudinepalli, J. Eur. Ceram. Soc., 35 131 (2015)

    Article  Google Scholar 

  11. 11. S H Song, Q Song, J Li, Z Zhang, V R Mudinepalli, Ceram Inter., 40 6473 (2014)

    Article  Google Scholar 

  12. 12. M P Reddy, A M A Mohamed, V R Mudinepalli, X B Zhou, Q Huang, 395 185 (2015)

    Article  Google Scholar 

  13. 13. V R Mudinepalli, S H Song, J Li, B S Murty, Mater. Che. Phys., 142 686 (2013)

    Article  Google Scholar 

  14. 14. V R Mudinepalli, S H Song, J Li, B S Murty, Ceram Inter., 40 1781 (2014)

    Article  Google Scholar 

  15. 15.V R Mudinepalli, L Feng, W C Lin, B S Murty (2014) Material Research innovations, doi: 10.1179/1433075X15Y.0000000014

    Google Scholar 

  16. 16. V R Mudinepalli, S H Song, B S Murty, Scrip Mater., 82 9 (2014)

    Article  Google Scholar 

  17. 17. V R Mudinepalli, S H Song, J Li, B S Murty, Ceram Inter., 41 6882 (2015)

    Article  Google Scholar 

  18. 18. V R Mudinepalli, S H Song, J Li, B S Murty, J Magn Mag Mater., 386 44 (2015)

    Article  Google Scholar 

  19. 19. L B Kong, T S Zhang, J Ma, F Boey, Progress in Mater Sci., 53 207 (2008)

    Article  Google Scholar 

  20. 20. G Dercz et al. Archives of Metallurgy and Materials., 54 741 (2009)

    Google Scholar 

  21. 21. L Zhang et al. J Electroceram., 21 605 (2008)

    Article  Google Scholar 

  22. 22. X M Chen et al. J Alloy and Comp 507 535 (2010)

    Article  Google Scholar 

  23. 23. C Suryanarayana. Progress in Mater Sci., 46 1 (2001)

    Article  Google Scholar 

  24. 24. A F Devonshire, Phil. Mag., 40 1019 (1949)

    Article  Google Scholar 

  25. 25. N Setter, R Waser, Acta Mater. 48 151 (2000)

    Article  Google Scholar 

  26. 26. G Shirane, R Pepinsky and B. Frazer, Acta Cryst., 9 131 (1956)

    Article  Google Scholar 

  27. 27. G Shirane, A Takeda, J. Phys. Soc. Jpn., 6 329 (1951)

    Article  Google Scholar 

  28. 28. R E Vold, R Biederman, G A Rossetti Jr, A Sacco Jr, T Sjodin, et al., J. Mater. Sci., 36 2019 (2001)

    Article  Google Scholar 

  29. 29.M VenkataRamana, N RamamanoharReddy (2010) Phys Scrip, 82: 01

    Article  Google Scholar 

  30. 30. L Gao, X H Jin, H Kawaoka, T Sekino, K Niihara, Mater. Sci. Eng., A334 262 (2002)

    Article  Google Scholar 

  31. 31. T Takeuchi, K Ado, T Asai, H Kageyama, Y Saito, J. Am. Ceram. Soc., 77 1665 (1994)

    Article  Google Scholar 

  32. 32. D Hennings, Int. J. High Technol. Ceram., 3 91 (1987)

    Article  Google Scholar 

  33. 33. G Arlt, D Hennings, G de With, J. Appl. Phys., 58 1619 (1985)

    Article  Google Scholar 

  34. 34. S -Y. Cheng, N –J Ho, H -Y Lu, J. Am. Ceram. Soc. 89 2177 (2006)

    Google Scholar 

  35. 35. K Kinoshita, A Yimura, J. Appl. Phys., 47 371 (1976)

    Article  Google Scholar 

  36. 36. A S Shaikh, R W Vest, G M Vest, IEEE Trans.Ultrason., Ferroelectr. Fre. Control, 36 407 (1989)

    Article  Google Scholar 

  37. 37. X M Chen, H Y Ma, W Ding, X G Zhao, X Liang, P Liu, J. Am. Ceram. Soc., 94 3364 (2011)

    Article  Google Scholar 

  38. 38.F A Kroger, H J Wink, In: F Seitz, D Turnbull (eds) Solid State Physics (New York: Academic Press, 1956).

    Google Scholar 

  39. 39. T Hungria, J Galy, A Castro, Adv. Eng. Mater., 11 615 (2009)

    Article  Google Scholar 

  40. 40. A M Locci, R Orrù, G Cao, J. Mater. Res., 20 734 (2005)

    Article  Google Scholar 

  41. 41. A M Locci, R Licheri, R Orrù, A Cincotti, G Cao, Ceram. Trans., 194 173 (2006)

    Google Scholar 

  42. 42. L Sun, Y F Chen, W H Ma, L W Wang, T Yu, M S Zhang, et al., Appl. Phys. Lett., 68 3728 (1996)

    Article  Google Scholar 

  43. 43. E Nieto, J F Fernandez, C Moure, P Duran, J. Mater. Sci., 30 6243 (1995)

    Article  Google Scholar 

  44. 44. T Takeuchi, M Tabuchi, I Kondoh, N Tamari, H Kageyama, J. Am. Ceram. Soc., 83 541 (2000)

    Article  Google Scholar 

Download references

This study was financially sponsored by Ministry of Science and Technology, Taiwan under Grant Nos. NSC 104-2811-M-003-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ramana Mudinepalli.

Additional information

Manuscript submitted August 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudinepalli, V.R., Leng, F., Lin, W. et al. Conventional and Spark Plasma Sintered Ba0.8Pb0.2TiO3 Nano Ceramics: Structural, Dielectric, and Ferroelectric Properties. Metall Mater Trans A 47, 2579–2586 (2016). https://doi.org/10.1007/s11661-016-3441-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3441-7

Keywords

Navigation