Skip to main content
Log in

Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties and microstructural characteristics of a steel able to sustain the TRIP-effect were studied. The material was prepared by taking in mind the partial substitution of silicon by aluminum following a processing route that included hot forging, hot and cold rolling, intercritical annealing, and a final bainitic isothermal treatment. The mechanical properties that were obtained resulted to be above those of commercial a 780 TRIP steel. The TRIP phenomenon was confirmed by the change in retained austenite before and after deforming the steel; X-ray diffraction was used to evaluate the volume content of retained austenite. Formability of the steel under study can be rationalized in terms of the texture developed in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Jacques, Q. Furnemont, F. Lani, T. Pardoen and F. Delannay: Acta Mater., 2007, 55, 3681-3693.

    Article  Google Scholar 

  2. R. Petrov, L. Kestens and Y. Houbaert: ISIJ Int., 2001, 41, 883-890.

    Article  Google Scholar 

  3. L. Skalova, R. Divisova and D. Jandova: J. Mater. Process. Tech.,2006, 175, 387-392.

    Article  Google Scholar 

  4. J. Zrnik, O. Muransky, P. Lukas, Z. Novy, P. Sittner and P. Hornak: Mater. Sci. Eng. A, 2006, A437, 114-119.

    Article  Google Scholar 

  5. A. Airod, R. Petrov, R. Colás and Y. Houbaert: ISIJ Int., 2004, 44, 179-186.

    Article  Google Scholar 

  6. M. De Meyer, D. Vanderschueren and B. De Cooman (1999) ISIJ Int. 39:813-22.

    Article  Google Scholar 

  7. H.K. Bhadeshia: Bainite in steels, 2nd Ed., The Institute of Materials, London, U.K., 2001.

    Google Scholar 

  8. P. Jacques, F. Delannay, X. Cornet, P. Harlet and J. Ladriere: Metall. Mater. Trans. A, 1998, 29A, 2383-2393.

    Article  Google Scholar 

  9. Z. Li, D. Wu and H. Lu: J. Iron Steel Res. Int., 2008, 15, 55-60.

    Article  Google Scholar 

  10. M. Cai, H. Ding, J. Zhang, L. Li, X. Li, and L. Du: J. Iron Steel Res. Int., 2009, 16, 55-60.

    Article  Google Scholar 

  11. P. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Humbeeck and F. Delannay: ISIJ Int., 2001, 41, 1068-1074.

    Article  Google Scholar 

  12. S. Papaefthymiou, W. Bleck, S. Kruijver, J. Sietsma, L. Zhao and S. Van der Zwaag: Mat. Sci. Tech., 2004, 20, 201-206.

    Google Scholar 

  13. B. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, 8, 285-303.

    Article  Google Scholar 

  14. J. Maki, J. Mahieu, B. De Cooman and S. Claessens: Mater. Sci. Tech., 2003, 19, 125-131.

    Article  Google Scholar 

  15. E. Bellhouse and J. McDermid: Mater. Sci. Eng. A, 2008, A491, 39-46.

    Article  Google Scholar 

  16. K.W. Andrews: J. Iron Steel Inst., 1965, 203, 721-727.

    Google Scholar 

  17. A.A Gorni: Steel Forming and Heat Treating Handbook, Sao Vicente, 2011.

  18. R.A. Grange: Met. Progr., 1961, 70 (4), 73-75.

    Google Scholar 

  19. O.G. Kasatkin, B.B. Vinokur and V.L. Pilyushenko: Met. Sc. Heat Treat., 1984, 26, 27-31.

    Article  Google Scholar 

  20. J.K. Lee, K.J. Lee and H.N. Han: POSCO Technical Research Laboratories Report, Pohang, 1999.

  21. J.S. Kirkaldy and D. Venugopalan: Prediction of microstructure and hardenability in low-alloy steels. In A.R. Marder and J.I. Goldstein (Eds.) International Conference on Phase Transformation in Ferrous Alloys, pp 125-148, TMS, Philadelphia, 1983.

    Google Scholar 

  22. P. Payson and C.H. Savage: Trans. ASM, 1944, 33, 261-280.

    Google Scholar 

  23. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, 183, 349-359.

    Google Scholar 

  24. B. Cullity: Elements of X-ray Diffraction, 2nd Ed., Addison-Wesley Publishing, New York, 1972.

    Google Scholar 

  25. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, 208, 469-474.

    Google Scholar 

  26. R. Ray and J. Jonas: Int. Mater. Rev, 1990, 35, 1-36.

    Article  Google Scholar 

  27. R. Ray, J. Jonas and R. Hook: Int. Mater. Rev., 1994, 39, 129-172.

    Article  Google Scholar 

  28. J. Gautam, R. Petrov, E. Leunis and L. Kestens: Steel Res. Int., 2011, 82, 881-885.

    Article  Google Scholar 

  29. E. Jiménez-Melero, N. Van Dijk, L. Zhao, J. Sietsma, S. Offerman, J. Wright and S. Van der Zaag: Acta Mater., 2009, 57, 533–543.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support provided by the Chilean National Found for Science and Technology (FONDECYT, Fondo Nacional de Ciencia y Tecnología) for project 1090311, and the Direction for Scientific and Technological Research (DICYT, Dirección de Investigaciones Científicas y Tecnológicas) of Universidad de Santiago de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Monsalve.

Additional information

Manuscript submitted March 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monsalve, A., Guzmán, A., De Barbieri, F. et al. Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel. Metall Mater Trans A 47, 3088–3094 (2016). https://doi.org/10.1007/s11661-016-3435-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3435-5

Keywords

Navigation