Skip to main content
Log in

Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and M.J. Pollard: Metall. Trans. A 2010, 41A, pp. 3032-41.

    Article  Google Scholar 

  2. [2] J.P. Shingledecker, P.J. Maziasz, N.D. Evans, M.L. Santella, and M.J. Pollard: Energy Material, 2006, vol. 1, pp. 25-32.

    Article  Google Scholar 

  3. [3] J.P. Shingledecker, P.J. Maziasz, N.D. Evans, M.J. and Pollard: International Journal of Pressure Vessels and Piping, 2007, vol. 84, pp. 21-28.

    Article  Google Scholar 

  4. [4] J. Barcik: Materials Science and Technology, 1988, vol. 4, pp. 5-15.

    Article  Google Scholar 

  5. [5] T. Sourmail, Materials Science and Technology, 2001, vol. 17, pp. 1-14.

    Article  Google Scholar 

  6. [6] S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, and H. Yaguchi: Materials Transactions, 2004, vol. 7, pp. 2239-44.

    Article  Google Scholar 

  7. Z. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen G and B.A. Chin: Scientific Reports, 2013, vol. 3, pp. 1-6

    Google Scholar 

  8. [8] V.N. Urtsev, D.A. Mirzaev, I.L. Yakovleva, N.A. Tereshchenko, and K.Y. Okishev: The Physics of Metals and Metallography, 2010, vol. 110, pp. 346-55.

    Article  Google Scholar 

  9. [9] N. Maruyama, M. Sugiyama, T. Hara, H. Tamehiro, Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels, Materials Transactions, 1999, vol. 40, pp. 268-77.

    Article  Google Scholar 

  10. R.W. Swindeman, E. Bolling, and C.Y. Li: Symposium during Proceedings, 1990 Pressure Vessels and Piping Conference, Nashville, TN, USA, 1990, pp. 165–77.

  11. Q. Wu, J.P. Shingledecker, R.W. Swindeman, and V.K. Vasudevan: Proceedings of the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants. ASM-International, Materials Park, 2005, pp. 748–61.

  12. Y. Sawaragi and S. Hirano: in Mechanical Behavior of Materials, M. Jono and T. Inone, eds., Pergamon Press, London, 1992, pp. 589–94.

  13. [13] C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, and Z. Liu: Progress in Natural Science: Materials International, 2012, vol. 22, pp. 175-85.

    Article  Google Scholar 

  14. [14] V.T. Ha, W.S. Jung, and J.Y. Suh: Metall. Trans.2011, vol. 42A, pp. 3378-85.

    Article  Google Scholar 

  15. J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard: Proceedings from the Materials Science & Technology Conference, Pittsburgh, Pennsylvania, 2005, pp. 129–138.

  16. P.J. Maziasz, J.P. Shingledecker, N.D. Evans and M.J. Pollard: Journal of Pressure Vessel Technology, 2009, vol. 131, pp. 051404_1-7.

    Article  Google Scholar 

  17. P.J. Maziasz and B.A. Pint: Journal of Engineering for Gas Turbines and Power, 2011, vol. 133, pp. 092102_1-5.

    Article  Google Scholar 

  18. [18] B.A. Pint and I.G. Wright: Materials Science Forum, 2004, vol. 461-164, pp.799-806.

    Article  Google Scholar 

  19. [19] R. Peraldi and B.A. Pint: Oxid. Met., 2004, vol. 61, pp. 463-83.

    Article  Google Scholar 

  20. [20] D.J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier Science, The Netherlands, 2008.

    Google Scholar 

  21. [21] D.J. Young, A. Chyrkin, and W.J. Quadakkers: Oxid. Met., 2012, vol. 77, pp. 252-64.

    Article  Google Scholar 

  22. [22] E.J. Opila: Mat. Sci. Forum, 2004, vol. 461-464, pp. 765-74.

    Article  Google Scholar 

  23. [23] H. Asteman, J.E. Svensson, M. Norell, and L.G. Johansson: Oxidation of Metals, 2000, vol. 54, pp. 11-26.

    Article  Google Scholar 

  24. [24] H. Hughes: J. Iron Steel Inst., 1967, vol. 205, pp. 775-78.

    Google Scholar 

  25. [25] P.W. Robinson and D.H. Jack: J. Heat Treating, 1985, vol. 4, pp. 69-74.

    Article  Google Scholar 

  26. [26] V. Vodárek: Scrip. Metall. Mat., 1991, vol. 25, pp. 549-52.

    Article  Google Scholar 

  27. [27] J.M. Silcock, D. Raynor, and G. Willoughby: Metal Science, 1977, vol. 11, pp. 551-62.

    Article  Google Scholar 

  28. H.I. Aaronson, J.K. Lee, and K.C. Russel: Precipitation Processes in Solids, Met. Soc. A.I.M.E New York, 1978, p. 31.

  29. S. Dryepondt, B.A. Pint, and P.J. Maziasz: Front. Mater., 2015, pp. 1–13.

  30. [30] A. Raghavan, C.F. Klein, and C.N. Marzinsky: Metall. Trans. A, 1992, 23A, pp. 2455-2467.

    Google Scholar 

  31. P.J. Maziasz, J.P. Shingledecker, N.D. Evans, and M.J. Pollard: Journal of Pressure Vessel Technology, 2009, vol. 131, pp. 051404_1-7

    Article  Google Scholar 

  32. [32] J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, and Q. Zhan: Materials Science and Engineering A, 2003, vol. 584, pp. 57-62.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank G.W. Garner, T.M. Lowe, T. Geer, J.L. Moser, and K.A. Powers for assistance with the experimental work. B.A Pint, L. F. Allard, and R.R. Unocic provided helpful comments and suggestions on the results and manuscript. Research was supported by the U.S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy, Office of Coal and Power R&D in the Office of Fossil Energy, and microscopy was supported through a user proposal by ORNL’s Center for Nanophase Materials Sciences (CNMS), which is a U.S. Department of Energy, Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga A. Unocic.

Additional information

U.S. Government Work. Not Protected by U.S. Copyright.

Manuscript submitted July 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unocic, K.A., Dryepondt, S., Yamamoto, Y. et al. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr. Metall Mater Trans A 47, 1641–1653 (2016). https://doi.org/10.1007/s11661-016-3348-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3348-3

Keywords

Navigation