Skip to main content
Log in

Orientation Selection and Microstructural Evolution in Directionally Solidified Tb0.3Dy0.7Fe1.95

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong 〈311〉 texture in a lower growth rate regime, 〈110〉 and “rotated 〈110〉” in an intermediate growth regime, and 〈112〉 in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid–liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid–liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (λ) and dλ/dH owing to the absence of pro-peritectic (Tb,Dy)Fe3 and formation of 〈112〉 texture, which lies closer to the easy magnetization direction (EMD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.E. Clark, H.S. Belson, and N. Tamagawa: AIP Conf. Proc., 1973, vol. 10, pp. 749-53.

    Article  Google Scholar 

  2. K.H.J. Buschow: Rep. Prog. Phys., 1977, vol. 40, pp. 1179-1256.

    Article  Google Scholar 

  3. N.C. Koon, C.M. Williams, and B.N. Das: J. Magn. Magn. Mater. 1991, vol. 100, pp. 173-85.

    Article  Google Scholar 

  4. J.D. Verhoeven, E.D. Gibson, O.D. McMasters, and H.H. Baker: Metall. Trans. A, 1987, vol. 18, pp. 223-31.

    Article  Google Scholar 

  5. J.D. Snodgrass and O.D. McMaster: J. Alloys Compd., 1997, vol. 258, pp. 24-9.

    Article  Google Scholar 

  6. M. Palit, S. Pandian, R. Balamuralikrishnan, A.K. Singh, N. Das, V. Chandrasekharan, and G. Markandeyulu: J. Appl. Phys., 2006, vol. 100, pp. 074913-1-5.

    Article  Google Scholar 

  7. J. Chengchang, L. Jianguo, M. Weizeng, and Z. Yaohe: J. Alloys Compd., 2002, vol. 333, pp. 291-5.

    Article  Google Scholar 

  8. Y. Zhao, C. Jiang, H. Zhang, and H. Xu: J. Alloys Compd., 2003, vol. 354, pp. 263-8.

    Article  Google Scholar 

  9. M. Palit, J.A. Chelvane, S. Pandian, N. Das, and V. Chandrasekaran: Scripta Mater., 2008, vol. 58, pp. 819-21.

    Article  Google Scholar 

  10. M. Palit, J.A. Chelvane, H. Basumatary, S. Banumathy, A.K. Singh, S. Pandian, and V. Chandrasekaran: Intermetallics, 2010, vol. 18, pp. 1027-32.

    Article  Google Scholar 

  11. W. Mei, T. Okane, T. Umeda, and S. Zhou: J. Alloys Compd., 1997, vol. 248, pp. 151-8.

    Article  Google Scholar 

  12. J.D. Verhoeven, E.D. Gibson, O.D. McMasters, and J.E. Ostenson: Metall. Trans. A, 1990, vol. 21, pp. 2249-55.

    Article  Google Scholar 

  13. M. Palit, S. Banumathy, A.K. Singh, S. Pandian, and K. Chattopadhyay: Intermetallics, 2011, vol. 19, pp. 357-68.

    Article  Google Scholar 

  14. W.J. Park, J.C. Kim, B.J. Ye, and Z.H. Lee, J. Cryst. Growth, 2000, vol. 212, pp. 283-90.

    Article  Google Scholar 

  15. D. Kang, J. Liu, C. Jiang, and H. Xu: Cryst. Growth Des., 2016. DOI:10.1021/acs.cgd.5b00096.

  16. G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan: Appl. Phys. Lett., 1995, vol. 67, pp. 2005-7.

    Article  Google Scholar 

  17. W. Löser, M. Leonhardt, H.G. Lindenkreuz, and B. Arnold: Mater. Sci. Eng. A, 2004, vol. 375, pp. 534-9.

    Article  Google Scholar 

  18. M. Takeyama, Y. Yamamoto, H. Morishima, K. Koike, S.Y. Chang, and T. Matsuo: Mater. Sci. Eng. A, 2002, vol. 329, pp. 7-12.

    Article  Google Scholar 

  19. M. Leonhardt, W. Löser, and H.G. Lindenkreuz: Acta Mater., 2002, vol. 50, pp. 725-34.

    Article  Google Scholar 

  20. J. Strohmenger, T. Volkmann, J. Gao, and D.M. Herlach: Mater. Sci. Eng. A, 2004, vol. 375, pp. 561-4.

    Article  Google Scholar 

  21. G. Phanikumar, K. Biswas, O. Funke, D. Holland-Moritz, D.M. Herlach, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 3591-3600.

    Article  Google Scholar 

  22. R. Trivedi: Scripta Mater., 2005, vol. 53, pp. 47-52.

    Article  Google Scholar 

  23. O. Hunziker, M. Vandyoussefi, and W. Kurz: Acta Mater., 1998, vol. 46, pp. 6325-36.

    Article  Google Scholar 

  24. S. Dobler, T.S. Lo, M. Plapp, A. Karma, and W. Kurz: Acta Mater., 2004, vol. 52, pp. 2795-2808.

    Article  Google Scholar 

  25. T.S. Lo, S. Dobler, M. Plapp, A. Karma, and W. Kurz: Acta Mater., 2003, vol. 51, pp. 599-611.

    Article  Google Scholar 

  26. R. Trivedi and J.H. Shin: Mater. Sci. Eng. A, 2005, vol. 413, pp. 288-95.

    Article  Google Scholar 

  27. J.S. Park and R. Trivedi: J. Cryst. Growth, 1998, vol. 187, pp. 511-5.

    Article  Google Scholar 

  28. P. Magnin and W. Kurz: Acta Metallurgica, 1987, vol. 35, pp. 111-28.

    Google Scholar 

  29. M. Gündüz, H. Kaya, E. Çadırlı, and A. Özmen: Mater. Sci. Eng. A, 2004, vol. 369, pp. 215-29.

    Article  Google Scholar 

  30. H. Kaya, E. Çadırlı, M. Gündüz, and A. Ülgen: J. Mater. Eng. Perform., 2003, vol. 12, pp. 544-51.

    Article  Google Scholar 

  31. J.A. Chelvane, S. Banumathy, M. Palit, H. Basumatary, A.K. Singh, and S. Pandian: J. Alloys Compd., 2010, vol. 507, pp. 162-6.

    Article  Google Scholar 

  32. M.G. Ardakani, N. D’Souza, A. Wagner, B.A. Shollock, and M. McLean: in Superalloys 2000, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, and T.M. Pollock, eds., TMS, Warrendale, PA, 2000, pp. 219–28.

Download references

Acknowledgments

Financial support rendered by DRDO and the constant encouragement given by the Director at DMRL are greatly acknowledged. The technical support extended by Dr S.V. Kamat, Head of Functional Material Division of DMRL, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithun Palit.

Additional information

Manuscript submitted July 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palit, M., Banumathy, S., Singh, A.K. et al. Orientation Selection and Microstructural Evolution in Directionally Solidified Tb0.3Dy0.7Fe1.95 . Metall Mater Trans A 47, 1729–1739 (2016). https://doi.org/10.1007/s11661-016-3345-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3345-6

Keywords

Navigation