Skip to main content
Log in

Thermal-Driven Fluorite–Pyrochlore–Fluorite Phase Transitions of Gd2Zr2O7 Ceramics Probed in Large Range of Sintering Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fluorite (F)–pyrochlore (P)–fluorite (F) phase transitions of Gd2Zr2O7 were investigated from 573 K to 1873 K (300 °C to 1600 °C), by means of X-ray diffraction, infrared spectra (IR), and Raman spectra. The low-temperature F phase can stably exist below 1523 K (1250 °C) and the F–P transition occurs at 1523 K to 1573 K (1250 °C to 1300 °C). The ordering process of P phase forms at 1573 K to 1773 K (1300 °C to 1500 °C) and the ordering degree increases with increasing sintering temperature and heat preservation period. High-temperature phase transition from P to F occurs between 1773 K and 1823 K (1300 °C and 1550 °C). IR spectra of samples with different ordering degrees show an interesting shift at 510 cm−1. Raman spectra show that only the A1g mode displays a significant change between F and P phases. This ordering degree and phase transition temperature studies would allow a more targeted experimental optimization of Gd2Zr2O7 to use in nuclear waste host, thermal barrier coatings, and solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Feng, B. Xiao, C. L. Wan, Z. X. Qu, Z. C. Huang, J. C. Chen, R. Zhou and W. Pan, Acta Mater. 2011, vol. 59, pp. 1742-1760.

    Article  Google Scholar 

  2. Jie Wu, Xuezheng Wei, Nitin P. Padture, Paul G. Klemens, Maurice Gell, Eugenio García, Pilar Miranzo and Maria I. Osendi, J. Am. Ceram. Soc. 2002, vol. 85, pp. 3031-3035.

    Google Scholar 

  3. J. A. Díaz-Guillén, M. R. Díaz-Guillén, J. M. Almanza, A. F. Fuentes, J. Santamaría and C. León, J. Phys.: Condens. Matter 2007, vol. 19, p. 356212.

    Google Scholar 

  4. J. Snyder, J. S. Slusky, R. J. Cava and P. Schiffer, Nature 2001, vol. 413, pp. 48-51.

    Article  Google Scholar 

  5. M. Hanawa, J. Yamaura, Y. Muraoka, F. Sakai and Z. Hiroi, J. Phys. Chem. Solids 2002, vol. 63, pp. 1027-1030.

    Article  Google Scholar 

  6. Rodney C. Ewing, William J. Weber and Jie Lian, J. Appl. Phys. 2004, vol. 95, pp. 5949-5971

    Article  Google Scholar 

  7. S. X. Wang, B. D. Begg, L. M. Wang, R. C. Ewing, W. J. Weber and K. V. Govidan Kutty, J. Mater. Res. 1999, vol. 14, pp. 4470-4473.

    Article  Google Scholar 

  8. M. A. Subramanian, G. Aravamudan and G. V. SubbaRao, Prog. Solid State Chem. 1983, vol. 15, pp. 55-143.

    Article  Google Scholar 

  9. F. X. Zhang, J. Lian, J. M. Zhang, K. J. Moreno, A. F. Fuentes, Zhongwu Wang and R. C. Ewing, J. Alloys Compd. 2010, vol. 494, pp. 34-39.

    Article  Google Scholar 

  10. A. Garbout, I. Ben Taazayet-Belgacem and M. Férid, J. Alloys Compd. 2013, vol. 573, pp. 43-52.

    Article  Google Scholar 

  11. K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan and T. Hartmann, Science 2000, vol. 289, pp. 748-751.

    Article  Google Scholar 

  12. B. P. Mandal and A. K. Tyagi, J. Alloys Compd. 2007, vol. 437, pp. 260-263.

    Article  Google Scholar 

  13. F. Zhang, J. Lian, U. Becker, R. Ewing, Jingzhu Hu and S. Saxena, Physical Review B 2007, vol. 76, p. 214104.

    Article  Google Scholar 

  14. D. Michel, M. Perez y Jorba and R. Collongues, Mater. Res. Bull. 1974, vol. 9, pp. 1457-1468.

    Article  Google Scholar 

  15. S. J. Patwe, B. R. Ambekar and A. K. Tyagi, J. Alloys Compd. 2005, vol. 389, pp. 243-246.

    Article  Google Scholar 

  16. Y. H. Lee, H. S. Sheu, J. P. Deng and H. C. I. Kao, J. Alloys Compd. 2009, vol. 487, pp. 595-598.

    Article  Google Scholar 

  17. Linggen Kong, Inna Karatchevtseva, Daniel J. Gregg, Mark G. Blackford, Rohan Holmes and Gerry Triani, J. Eur. Ceram. Soc. 2013, vol. 33, pp. 3273-3285.

    Article  Google Scholar 

  18. B.P. Mandal, S.K. Deshpande and A.K. Tyagi, J. Mater. Res. 2008, vol. 23, pp. 911-916.

    Article  Google Scholar 

  19. Chunjie Wang, Yue Wang, Yongliang Cheng, Wenzhi Huang, ZuhairS Khan, Xizhi Fan, Ying Wang, Binglin Zou and Xueqiang Cao, J. Mater. Sci. 2012, vol. 47, pp. 4392-4399.

    Article  Google Scholar 

  20. Catherine Heremans, Bernhardt J. Wuensch, Judith K. Stalick and Edward Prince, J. Solid State Chem. 1995, vol. 117, pp. 108-121.

    Article  Google Scholar 

  21. N. Arul Dhas and Kashinath C. Patil, J. Mater. Chem. 1993, vol. 3, pp. 1289-1294.

    Article  Google Scholar 

  22. M. T. Vandenborre, E. Husson, J. P. Chatry and D. Michel, J. Raman Spectrosc. 1983, vol. 14, pp. 63-71.

    Article  Google Scholar 

  23. B. P. Mandal, Ankita Banerji, Vasant Sathe, S. K. Deb and A. K. Tyagi, J. Solid State Chem. 2007, vol. 180, pp. 2643-2648.

    Article  Google Scholar 

  24. Barry E. Scheetz and William B. White, J. Am. Ceram. Soc. 1979, vol. 62, pp. 468-470.

    Article  Google Scholar 

  25. M. Sanjuán, C. Guglieri, S. Díaz-Moreno, G. Aquilanti, A. Fuentes, L. Olivi and J. Chaboy, Physical Review B 2011, vol. 84, p. 104207

    Article  Google Scholar 

  26. N. J. Hess, B. D. Begg, S. D. Conradson, D. E. McCready, P. L. Gassman and W. J. Weber, The Journal of Physical Chemistry B 2002, vol. 106, pp. 4663-4677.

    Article  Google Scholar 

  27. D. Michel, M. Perez y Jorba and R. Collongues, J. Raman Spectrosc. 1976, vol. 5, pp. 163-180.

    Article  Google Scholar 

  28. Chunlei Wan, Zhixue Qu, Aibing Du and Wei Pan, J. Am. Ceram. Soc. 2011, vol. 94, pp. 592-596.

    Article  Google Scholar 

  29. R. E. Williford, W. J. Weber, R. Devanathan and J. D. Gale, J. Electroceram. 1999, vol. 3, pp. 409-424.

    Article  Google Scholar 

  30. P. J. Wilde and C. R. A. Catlow, Solid State Ionics 1998, vol. 112, pp. 173-183.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of the People’s Republic of China under Grant Nos. 11505122 and 91326103, the ITER Program (No. 2014GB125002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqi Qi or Tiecheng Lu.

Additional information

Manuscript submitted March 31, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Huang, Z., Qi, J. et al. Thermal-Driven Fluorite–Pyrochlore–Fluorite Phase Transitions of Gd2Zr2O7 Ceramics Probed in Large Range of Sintering Temperature. Metall Mater Trans A 47, 623–630 (2016). https://doi.org/10.1007/s11661-015-3234-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3234-4

Keywords

Navigation