Skip to main content
Log in

Functionally Graded High-Alloy CrMnNi TRIP Steel Produced by Local Heat Treatment Using High-Energy Electron Beam

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cold-rolled, high-alloy CrMnNi TRIP steel was heat treated by electron beam (EB) treatment. After cold rolling to a deformation degree of 70 pct, the microstructure was mainly martensitic with residual austenite. The aim of the subsequent EB treatment was to improve mechanical properties regarding strength and ductility by grain refinement. The process is influenced by EB-specific parameters, resulting in different temperature-time regimes due to different heating and cooling rates. Grain size gradients over the cross section could not be completely suppressed, but minimized. Investigations included optical microscopy, scanning electron microscopy, hardness measurements, quasi static tensile tests, digital image correlation, and thermography for functionally graded tensile specimens. The local heat treatment was used to set specific tailored properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, and P. R. Scheller: Steel Res. Int., 2011, 82, pp. 39–44.

    Article  Google Scholar 

  2. A. Jahn, A. Kovalev, A. Weiß, P.R. Scheller, S. Wolf, L. Krüger, S. Martin, and U. Martin: Proc. of ESOMAT 2009, Prague, 2009, vol. 05013, pp. 1–7. DOI:10.1051/esomat/200905022.

  3. A. Weidner, A. Glage, and H. Biermann: Proc. Eng., 2010, vol. 2, pp. 1961–1971.

    Article  Google Scholar 

  4. A. Weidner, S. Martin, V. Klemm, U. Martin, and H. Biermann: Scr. Mater., 2011, vol. 64, pp. 513–516.

    Article  Google Scholar 

  5. A. Weiss, H. Gutte, M. Radke, and P.R. Scheller: Patent WO002008009722A1.

  6. A. Weidner, A. Müller, A. Weiss, and H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68–76.

    Article  Google Scholar 

  7. L. Krüger, S. Wolf, U. Martin, Martin, S., Scheller, P. R., A. Jahn, and A. Weiß: J. Phys.: Conf. Ser., 2010, vol. 240, pp. 1–4.

    Google Scholar 

  8. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Mattlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  9. M. Moallemi, A. Najafizadeh, A. Kermanpur, and A. Rezaee: Mater. Sci. Eng. A, 2011, vol. 530, pp. 378-381.

    Article  Google Scholar 

  10. T. Lee, M. Koyama, K. Tsuzaki, Y.-H. Lee, and C. S. Lee: Mater. Letters, 2012, vol. 75, pp. 169-171.

    Article  Google Scholar 

  11. R. D. K. Misra, S. Nayak, S. A. Mali, J. S. Shah, M. C. Somani, and L. P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3–12.

    Article  Google Scholar 

  12. A. Rezaee, A. Najafizadeh, A. Kermanpur, and M. Moallemi: Mater. Des., 2011, vol. 32, pp. 4437–42.

    Article  Google Scholar 

  13. V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, R.D.K. Misra, Mater. Sci. Eng. A, 2014, 613, pp. 60–70.

    Article  Google Scholar 

  14. J. E. Jin, Y. S. Jung, and Y. K. Lee: Mater. Sci. Eng. A, 2007, vol. 449–451, pp. 786–789.

    Article  Google Scholar 

  15. S. Takaki, K. Tomimura, and S. Ueda: ISIJ INT., 1994, 34, pp. 522–527.

    Article  Google Scholar 

  16. D. L. Johannsen, A. Kyrolainen, and P. J. Ferreira: Metall. Mater. Trans., 2006, vol. 37A, pp. 2325–2338.

    Article  Google Scholar 

  17. F. Forouzan, A. Najafizadeh, Kermanpur, A., A. Hedayati, and R. Surkialiabad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7334–7339.

    Article  Google Scholar 

  18. R. D. K. Misra, Z. Zhang, P. K. C. Venkatasurya, M. C. Somani, and L. P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7779–7792.

    Article  Google Scholar 

  19. R. D. K. Misra, S. Nayak, P. K. C. Venkatasurya, V. Ramuni, M. C. Somani, and L. P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2162–2174.

    Article  Google Scholar 

  20. M. Eskandari, A. Zarei-Hanzaki, and H. R. Abedi: Mater. and Design, 2013, vol. 45, pp. 674–681.

    Article  Google Scholar 

  21. A. Müller, C. Segel, M. Linderov, A. Vinogradov, A. Weidner, and H. Biermann: Metall. Mater. Trans. A, 2015. DOI:10.1007/s11661-015-2953-x.

  22. R. D. K. Misra,, B. R. Kumar, M. Somani, and P. Karjalainen: Scripta Mater., 2008, vol. 59, pp. 79–82.

    Article  Google Scholar 

  23. R. D. K. Misra, Z. Zhang, Venkatasurya, P. K. C., M. C. Somani, and L. P. Karjalainen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6958–6963.

    Article  Google Scholar 

  24. R.D.K. Misra, Z. Zhang, Z. Jia, P.K.C. Venkatsurya, M.C. Somani, and L.P. Karjalainen, Mater. Sci. Eng. A, 2012, vol. 548, pp. 161–174.

    Article  Google Scholar 

  25. T. Niendorf, C. J. Rüsing, A. Frehn, and H. J. Maier: Mater. Res. Lett., 2013, vol. 1, pp. 96–101.

    Article  Google Scholar 

  26. R. Zenker, Adv. Eng. Mat., 2004, vol. 6, pp. 581-588.

    Article  Google Scholar 

  27. R. Zenker, Int. Heat Treat. Surf. Eng., 2009, vol. 3, pp. 141-146.

    Article  Google Scholar 

  28. R. Zenker, Int. Heat Treat. and Surf. Eng., 2011, vol. 5, pp. 50-56.

    Article  Google Scholar 

  29. J.L. Dossett and G.E. Totten: ASM Handbook, Steel Heat Treat. Fund. and Proc., vol. 4A, 2013, ASM International, Materials Park, OH, 2013, pp. 462–70.

  30. Feritscope & FMP30—Helmut Fischer GmbH, Industriestraße 21, 71069 Sindelfingen-Maichingen

  31. J. Talonen, P. Aspegren, and H. Hänninen: Mat. Sci. Technol., 2004, vol. 20, pp. 1506–1512.

    Article  Google Scholar 

  32. D. Raabe, and K. Lücke: Mat. Sci. Forum, 1994, vol. 157-162, pp. 597–610.

    Article  Google Scholar 

  33. T. Leffers, and R. K. Ray: Progr. in Mat. Sci., 2009, vol. 54, pp. 351–396.

    Article  Google Scholar 

  34. S. Wolf: Doctoral thesis, TU Bergakademie Freiberg, 2012.

  35. C. S. Yoo, Y. M. Park, Y. S. Jung, and Y. K. Lee: Scr. Mater., 2008, vol. 59, pp. 71–74.

    Article  Google Scholar 

  36. J. Huong, X. Ye, Y. Gu, and Z. Xu: Mater. Sci. Eng. A, 2012, vol. 532, pp. 190–195.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the German Research Foundation (DFG) for the financial support of the Collaborative Research Centre TRIP-Matrix Composites (CRC 799) within subproject A7. The authors thank Mr. U. Heinze (Institute of Metal Forming, TU Bergakademie Freiberg) for cold rolling of the steel plates. Furthermore, the authors appreciate the support of Mr. G. Schade (Institute of Materials Engineering, TU Bergakademie Freiberg) during tensile testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Buchwalder.

Additional information

Manuscript submitted August 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinze, D., Buchwalder, A., Jung, A. et al. Functionally Graded High-Alloy CrMnNi TRIP Steel Produced by Local Heat Treatment Using High-Energy Electron Beam. Metall Mater Trans A 47, 123–138 (2016). https://doi.org/10.1007/s11661-015-3017-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3017-y

Keywords

Navigation