Skip to main content
Log in

Activation Energy Calculations for the Portevin–Le Chatelier Effect in Nimonic 263 Superalloy

  • Symposium: Multiscale Microstructure, Mechanics and Prognosis of High Temperature Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Portevin–Le Chatelier (PLC) effect in the Nimonic 263 superalloy was investigated by tensile test in a wide temperature range, from room temperature to 1033 K (760 °C), and at strain rates between 0.1 and 4 × 10–4 s–1. Types A, B, and C serrations were observed depending upon the test temperatures and strain rates. The activation energy (Q) for serrated flow was determined by employing various methodologies for T < 723 K (450 °C), where a normal PLC effect was observed. The value of Q was found to be independent of the method employed. The average Q value of 70 KJ/mol was found to be in agreement with that for diffusion of substitutional solutes such as Cr and Mo in a Ni matrix by pipe diffusion. At temperatures ranging from 723 K to 923 K (450 °C to 650 °C), type C serrations and an inverse PLC effect were noticed, which may be caused by unlocking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.Y. Cui, T. Jin, X.F. Sun: J. Mater. Sci., 2011, vol. 46, pp. 5546-52.

    Article  Google Scholar 

  2. R.A. Mulford, U.F. Kcoks: Acta Metall., 1979, vol. 27, pp. 1125-34.

    Article  Google Scholar 

  3. Q. Hu, Q. Zhang, P. Cao, S. Fu: Acta Mater., 2012, vol. 60, pp. 1647-57.

    Article  Google Scholar 

  4. H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, J. Fan: Acta Mater., 2007, vol. 55, pp. 2219-28.

    Article  Google Scholar 

  5. Q. Zhang, Z. Jiang, H. Jiang, Z. Chen, X. Wu: Int. J. Plast., 2005, vol. 21, pp. 2150-73.

    Article  Google Scholar 

  6. S. Hong, S. Lee: J. Nucl. Mater., 2004, vol. 328, pp. 232-42.

    Article  Google Scholar 

  7. V. Shankar, M. Valsan, K. Bhanu, S. Rao, S.L. Mannan: Metall. Mater. Trans. A., 2004, vol. 35, pp. 3129-39.

    Article  Google Scholar 

  8. Y. Brechet, Y. Estrin: Acta Metall. Mater., 1995, vol. 43, pp. 955-63.

    Article  Google Scholar 

  9. L.P. Kubin, Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697-708.

    Article  Google Scholar 

  10. P. Hähner: Acta Mater., 1997, vol. 45, pp. 3695-707.

    Article  Google Scholar 

  11. A.H. Cottrell: Phil. Mag., 1953, vol. 44, pp. 829-32.

    Article  Google Scholar 

  12. R.K. Ham, D. Jaffrey: Phil Mag., 1967, vol. 15, pp. 247-56.

    Article  Google Scholar 

  13. P.G. McCormick: Acta Metall., 1972, vol. 20, pp. 351-4.

    Article  Google Scholar 

  14. A. Van Den Beukel: Phys Stat Sol., 1975, vol. 30, pp. 197-206.

    Article  Google Scholar 

  15. R.W. Hayes: Acta Metall., 1983, vol. 31, pp. 365-71.

    Article  Google Scholar 

  16. E. Pink: Scripta Metall., 1983, vol. 17, pp. 847–52.

    Article  Google Scholar 

  17. E. Pink and A. Grinberg: Mater. Sci. Eng., 1981, vol. 51, pp. 1–8.

    Article  Google Scholar 

  18. C.H. Hale, W.S. Rollings, M.L. Weaver: Mater. Sci. Eng. A., 2001, vol. 300, pp. 153-64.

    Article  Google Scholar 

  19. S.A. Nalawade, M. Sundararaman, R. Kishore, J.G. Shah: Scripta Mater., 2008, vol. 59, pp. 991-4.

    Article  Google Scholar 

  20. P. Rodriguez: Bull Mater Sci., 1984, vol. 6, pp. 653-63.

    Article  Google Scholar 

  21. K. Gopinath, A.K. Gogia, S.V. Kamat, U. Ramamurty: Acta Mater., 2009, vol. 57, pp. 1243-53.

    Article  Google Scholar 

  22. S. Fu, T. Cheng, Q. Zhang, Q. Hu, P. Cao: Acta Mater., 2012, vol. 60, pp. 6650-6.

    Article  Google Scholar 

  23. Y. Nakada, A.S. Keh: Acta Mater., 1970, vol. 18, pp. 437-43.

    Article  Google Scholar 

  24. H. Mehrer: Diffusion in solid metals and alloys, Springer, New York, 1990, p. 133.

    Book  Google Scholar 

  25. B.Max, B.Viguier, E.Andrieu, J.M.Cloue: Metall. Mater. Trans. A., 2014, vol. 45, pp. 5431-41.

    Article  Google Scholar 

  26. C.G.Tian, C.Y.Cui, Y.F.Gu, X.F.Sun: Acta Metall. Sin., 2012, vol.48, pp.1223-8.

    Article  Google Scholar 

  27. R.W. Hayes, W.C. Hayes: Acta Metall. 1982, vol.30, pp.1295-301.

    Article  Google Scholar 

  28. G.M. Han, C.G. Tian, C.Y. Cui, Z.Q. Hu, and X.F. Sun: Acta Metall. Sin., 2014, DOI:10.1007/s40195-015-0230-z.

  29. A. Kalk, C. Schwink: Philos. Mag., 1995,vol.72,pp. 315-39.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the High Technology Research and Development Program of China (No. 2014AA041701) and the National Natural Science Foundation of China (NSFC) under Grant Nos. 51171179, 51271174, 51331005, and 11332010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Cui.

Additional information

Manuscript submitted November 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G.M., Tian, C.G., Chu, Z.K. et al. Activation Energy Calculations for the Portevin–Le Chatelier Effect in Nimonic 263 Superalloy. Metall Mater Trans A 46, 4629–4635 (2015). https://doi.org/10.1007/s11661-015-3000-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3000-7

Keywords

Navigation