Skip to main content
Log in

Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Niobium-containing ferritic stainless steels are finding new applications in automotive exhaust components because of their oxidation resistance, thermal fatigue resistance, and high-temperature strength. The mechanical behavior of Nb-containing ferritic steels at service temperatures of 973 K (700 °C) and higher results from the convolution of dynamic microstructural changes including precipitation, precipitate coarsening, strain hardening, recovery, and recrystallization. The relative contributions of these competing processes have yet to be clarified. In this study, the high-temperature flow strength of an 18Cr-2Mo-0.5Nb ferritic stainless steel (SUS 444) was correlated with microstructure under different strain and initial precipitate distributions to clarify the relative role of the strengthening and softening processes. High-temperature tensile tests at 1023 K (750 °C) of un-aged (initial microstructure is precipitate-free) and pre-aged (initial microstructure contains precipitates) samples were carried out and transmission electron microscopy was used to assess dislocation distributions and precipitate morphology. The difference in the stress–strain curves between un-aged and pre-aged samples was drastic; the yield strength of the un-aged sample was twice that of the pre-aged sample, and the un-aged sample exhibits a noticeable yield drop. Transmission electron microscopy revealed a Laves phase nucleated and grew during the high-temperature tensile test in the un-aged sample and the majority of the precipitates in the pre-aged sample were the same Laves phase. Furthermore, a strain effect on precipitate growth was recognized in un-aged and pre-aged conditions by comparing grip (no strain) and gage (strained) sections of tensile samples. The dominant strengthening contribution in un-aged samples is initially the precipitate shearing mechanism and it changes to Orowan strengthening beyond the ultimate tensile strength, whereas the dominant contribution in the pre-aged samples appears to be Orowan strengthening throughout the stress–strain curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Nakamura, K. Miyakusu and Y. Uematsu: Current advances in materials and processes - the Iron and Steel Institute of Japan, 1991, vol. 4, pp. 1788-91.

    Google Scholar 

  2. K. Ohmura, N. Fujita, M. Kikuchi, T. Tsuzaki and I. Hiroshige: Current advances in materials and processes - the Iron and Steel Institute of Japan, 1991, vol. 4, pp. 1796-99.

    Google Scholar 

  3. N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki and I. Hiroshige: Scripta Mater., 1996, vol. 35, pp. 705-10.

    Article  Google Scholar 

  4. N. Fujita, K. Ohmura and A. Yamamoto: Mater. Sci. Eng. A, 2003, vol. 351, pp. 272-81.

    Article  Google Scholar 

  5. N. Nabiran, S. Klein, S. Weber, and W. Theisen: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 102-14.

    Article  Google Scholar 

  6. A. Miyazaki, K. Takao and O. Furukimi: ISIJ International, 2002, vol. 42, pp. 916-20.

    Article  Google Scholar 

  7. N. Fujita and M. Kikuchi: Tetsu-to-Hagané, 2003, vol. 89, pp. 510-17.

    Google Scholar 

  8. D. G. Morris, M. A. Munoz-Morris and C. Baudin: Acta Mater. 2004, vol. 52, pp. 2827-36.

    Article  Google Scholar 

  9. G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee and K. S. Lee: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159-65.

    Article  Google Scholar 

  10. Y. Uematsu, M. Akita, M. Nakajima and K. Tokaji: Int. J. Fatigue, 2008, vol. 30, pp. 642-48.

    Article  Google Scholar 

  11. T. Yamagishi, M. Akita, M. Nakajima, Y. Uematsu and K. Tokaji: Procedia Engineering, 2010, vol. 2, pp. 275-81.

    Article  Google Scholar 

  12. S. J. Ko and Y-J. Kim (2012) Mater. Sci. Eng. A 534:7-12.

    Article  Google Scholar 

  13. Y-T. Chiu and C-K. Lin: J. Power Sources, 2012, vol. 219, pp. 112-19.

    Article  Google Scholar 

  14. Z. Y. Liu, F. Gao, L. Z. Jiang and G. D. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3800-6.

    Article  Google Scholar 

  15. Y-T. Chiu, C-K. Lin and J-C. Wu: J. Power Sources, 2011, vol. 196, pp. 2005-12.

    Article  Google Scholar 

  16. Y-T. Chiu and C-K. Lin: J. Power Sources, 2012, vol. 198, pp. 149-57.

    Article  Google Scholar 

  17. S. V. Mehtonen, L. P. Karjalainen and D. A. Porter: Mater. Sci. Eng. A, 2013, vol. 571, pp. 1-12.

    Article  Google Scholar 

  18. M. Kato: Introduction to the theory of dislocations, pp. 139-144, Shokabo, Tokyo, 1999.

    Google Scholar 

  19. T. Sawatani, S. Minamino and H. Morikawa: Trans. ISIJ, 1982, vol. 22, pp. 172-80.

    Article  Google Scholar 

  20. F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena Second Edition, pp. 451-467, Elsevier, UK, 2004.

    Book  Google Scholar 

  21. R. Horiuchi and H. Yoshinaga: Trans. JIM, 1965, vol. 6, pp. 131-38.

    Google Scholar 

  22. H. Nakashima, K. Iwasaki, S. Goto and H. Yoshinaga: Marer. Trans. JIM, 1990, vol. 31, pp. 35-45.

    Article  Google Scholar 

  23. W. C. Oliver and W. D. Nix: Acta Metall., 1982, vol. 30, pp. 1335-47.

    Article  Google Scholar 

  24. I. M. Lifshitz and V. V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  25. C. Wagner: Z. Electrochem., 1961, vol. 65, pp. 581-91.

    Google Scholar 

  26. E.A. Brandes, and G.B. Brook: Smithells Metals Reference Book, 7th edn., Butterworth – Heinernann, Read Educational and Professional Publishing, UK, 1998, pp. 13-19–13-20.

  27. R. S. W. Shewfelt and L. M. Brown: Phil. Mag. 1974, vol. 30, pp. 1135-45.

    Article  Google Scholar 

  28. R. S. W. Shewfelt and L. M. Brown: Phil. Mag. 1977, vol. 35, pp. 945-62.

    Article  Google Scholar 

  29. G.F. Vander Voot: Metallography, Principles and Practice, McGraw Hill, NY, 1984.

Download references

Acknowledgments

The authors are grateful to the Nanoscale Characterization and Fabrication Laboratory of the Institute for Critical Technology and Applied Science (NCFL-ICTAS) at Virginia Tech for the use of its facilities. K.I. thanks Professor Hideharu Nakashima in Kyushu University for fruitful discussions. K.I. was partly supported by Strategic Young Researcher Overseas Visits Program (JSPS #R2408, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Murayama.

Additional information

Manuscript submitted January 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, Ki., Yamoah, N.K.G., Reynolds, W.T. et al. Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel. Metall Mater Trans A 46, 3460–3469 (2015). https://doi.org/10.1007/s11661-015-2936-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2936-y

Keywords

Navigation