Skip to main content
Log in

Influence of Short Austenitization Treatments on the Mechanical Properties of Low-Alloy Steels for Hot Forming Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current work elucidates an improvement of the mechanical properties of tool-quenched low-alloy steel by employing extremely short austenitization durations utilizing a press heating arrangement. Specifically, the influence of different austenitization treatments—involving austenitization durations ranging from three to 15 seconds—on the mechanical properties of low-alloy steel in comparison to an industrial standard furnace process was examined. A thorough set of experiments was conducted to investigate the role of different austenitization durations and temperatures on the resulting mechanical properties such as hardness, bending angle, tensile strength, and strain at fracture. The most important finding is that the hardness, the bending angle as well as the tensile strength increase with shortened austenitization durations. Furthermore, the ductility of the steels exhibits almost no difference following the short austenitization durations and the standard furnace process. The enhancement of the mechanical properties imposed by the short heat treatments investigated, is related to a refinement of microstructural features as compared to the standard furnace process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103-118.

    Article  Google Scholar 

  2. M. Maikranz-Valentin, U. Weidig, U. Schoof, H.-H. Becker and K. Steinhoff: Steel Res. Int., 2008, vol. 79, pp. 92-97.

    Google Scholar 

  3. T. Lolla, G. Cola, B. Narayanan, B. Alexandrov and S.S. Babu: Mater. Sci. Technol., 2011, vol. 27, pp. 863-875.

    Article  Google Scholar 

  4. D.J. Tung, T. Lolla, S.S. Babu and G.M. Cola: Adv. Mater. Process., 2013, vol. 171, pp. 48-50.

    Google Scholar 

  5. C.R.F. Azevedo, A.A. Garboggini and A.P. Tschipitschin: Mater. Sci. Technol., 1993, vol. 9, pp. 705-10.

    Article  Google Scholar 

  6. I. Dlouhy, M. Kouril, and P. Stolar P: 3rd International Europe Heat Treatment and Surface Engineering Conference, 1996, pp. 716–41.

  7. G. Cola: Mater. Sci. Technol. Conf. Exh., 2009, vol. 2, pp. 1337-45.

    Google Scholar 

  8. G. Frost, M. Niesse, J. Lackmann, S. Konrad, and H.-G. Lambers: Patent DE2014101539, February 02, 2014.

  9. E. De Moor, P.J. Gibbs, J.G. Speer, D.K. Matlock and J.G. Schroth: Iron and Steel Technol., 2010, vol. 7, pp. 133-44.

    Google Scholar 

  10. M. Umemoto, K. Horiuchi and I. Tamuara: Trans. ISIJ Int., 1982, vol. 22, pp. 854-61.

    Article  Google Scholar 

  11. A. Matsuzaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1999, vol. 15, pp. 518-22.

    Article  Google Scholar 

  12. H. Liu, X. Lu, X. Jin, H. Dong and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749-52.

    Article  Google Scholar 

  13. H.-G. Lambers, S. Tschumak, H.J. Maier and D. Canadinc: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1355-66.

    Article  Google Scholar 

  14. G.R. Speich, V.A. Demarest and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419-28.

    Article  Google Scholar 

  15. H. Azizi-Alizamini, M. Militzer and W.J. Poole: ISIJ Int., 2011, vol. 51, pp. 958-64.

    Article  Google Scholar 

  16. R.R. Judd and H.W. Paxton: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 206-29.

    Google Scholar 

  17. S.F. Dirnfeld, B.M. Korevaar and F. Van´t Spijker: Metall. Trans., 1974, vol. 5, pp. 1437-44.

    Article  Google Scholar 

  18. Y.W. Kim, S.W. Song, S.J. Seo, S.-G. Hong and C.S. Lee: Mater. Sci. Eng. A, 2013, vol. 565, pp. 430-38.

    Article  Google Scholar 

  19. S.H. Koutzaki, J.E. Krzanowski and J.J. Nainaparampil: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1579-88.

    Article  Google Scholar 

  20. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  21. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    Google Scholar 

  22. R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov: Mater. Sci. Eng. A, 1993, vol. 168, pp. 141-81.

    Article  Google Scholar 

  23. H.K.D.H Bhadeshia: Mater. Sci. Eng. A, 2008, vol. 481-82, pp. 36-39.

    Article  Google Scholar 

  24. Y. Tomita and K. Okabayashi: Metall. Trans. A, 1985, vol. 16A, pp. 73-82.

    Article  Google Scholar 

  25. C.H. Young and H.K.D.H. Bhadeshia: Mater. Sci. Tech., 1994, vol. 10, pp. 209-14.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by Deutsche Forschungsgemeinschaft within the Transregional Collaborative Research Center TRR 30 “Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grundlage thermo-mechanisch gekoppelter Phänomene” and the help of Felix Hegemann with the experiments are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Joachim Holzweissig.

Additional information

Manuscript submitted January 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzweissig, M.J., Lackmann, J., Konrad, S. et al. Influence of Short Austenitization Treatments on the Mechanical Properties of Low-Alloy Steels for Hot Forming Applications. Metall Mater Trans A 46, 3199–3207 (2015). https://doi.org/10.1007/s11661-015-2907-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2907-3

Keywords

Navigation