Skip to main content
Log in

An Efficient Multi-Scale Simulation Architecture for the Prediction of Performance Metrics of Parts Fabricated Using Additive Manufacturing

  • Symposium: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, an overview of the computational tools developed in the area of metal-based additively manufactured (AM) to simulate the performance metrics along with their experimental validations will be presented. The performance metrics of the AM fabricated parts such as the inter- and intra-layer strengths could be characterized in terms of the melt pool dimensions, solidification times, cooling rates, granular microstructure, and phase morphologies along with defect distributions which are a function of the energy source, scan pattern(s), and the material(s). The four major areas of AM simulation included in this study are thermo-mechanical constitutive relationships during fabrication and in-service, the use of Euler angles for gaging static and dynamic strengths, the use of algorithms involving intelligent use of matrix algebra and homogenization extracting the spatiotemporal nature of these processes, a fast GPU architecture, and specific challenges targeted toward attaining a faster than real-time simulation efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.J.R. Hughes: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Dover Publications, Mineola 2012.

  2. J.N. Reddy: An Introduction to the Finite Element Method, McGraw-Hill New York, 1993.

  3. B.A. Szabo, and I. Babuška: Finite Element Analysis, Wiley, New York, 1991.

  4. ASTM Standard, Annual book of ASTM standards 2004, vol. 3, pp. 57-72.

    Google Scholar 

  5. YC Chen and K Nakata, Materials & Design 2009, vol. 30, pp. 469-474.

    Article  Google Scholar 

  6. R Filip, K Kubiak, W Ziaja and J Sieniawski, Journal of Materials Processing Technology 2003, vol. 133, pp. 84-89.

    Article  Google Scholar 

  7. HK Rafi, D Pal, N Patil, TL Starr and BE Stucker, Journal of Materials Engineering and Performance 2014, vol. 23, pp. 4421-4428.

    Article  Google Scholar 

  8. N Kumar, RS Mishra, CS Huskamp and KK Sankaran, Materials Science and Engineering: A 2011, vol. 528, pp. 5883-5887.

    Article  Google Scholar 

  9. G Lütjering, Materials Science and Engineering: A 1998, vol. 243, pp. 32-45.

    Article  Google Scholar 

  10. Z.Y. Ma, S.R. Sharma and R.S. Mishra: Scripta Mater. 2006, vol. 54, pp. 1623–1626.

    Article  Google Scholar 

  11. RS Mishra, SX McFadden, RZ Valiev and AK Mukherjee, JOM 1999, vol. 51, pp. 37-40.

    Article  Google Scholar 

  12. K. Zeng, D. Pal, and B.E. Stucker: in Solid Freeform Fabrication Symposium, (Austin, TX, 2012).

  13. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies, Springer, New York, 2010.

  14. D. Pal, N. Patil, K. Zeng, C. Teng, S. Xu, T. Sublette, and B.E. Stucker: in Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2014.

  15. N. Patil, D. Pal, and B.E. Stucker: in Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2013.

  16. D. Pal, N. Patil, and B.E. Stucker: in Additive Manufacturing Consortium, Lawrence Livermore National Laboratory, 2014.

  17. D. Pal, N. Patil, K. Zeng and B.E. Stucker: J. Manuf. Sci. Eng., 2014, vol. 136, pp. 061022.1−061022.16

    Article  Google Scholar 

  18. Thermocalc, “Thermocalc for Windows” (Thermocalc, 2014), http://www.thermocalc.com/media/8139/tcw_examples.pdf 31st Dec 2014.

  19. Thermocalc, “TC-Prisma User Guide and Examples” (Thermocalc, 2014), http://www.thermocalc.com/media/6045/tc-prisma_user-guide-and-examples.pdf 31st Dec 2014.

  20. D. Pal and B. Stucker, Journal of Applied Physics 2013, vol. 113, p. 203517.1–203517.8.

    Google Scholar 

  21. D. Pal, S. Behera, and S. Ghosh: in United States National Congress on Computational Mechanics, 2009.

  22. M Matsumoto, M Shiomi, K Osakada and F Abe, International Journal of Machine Tools and Manufacture 2002, vol. 42, pp. 61-67.

    Article  Google Scholar 

  23. M Shiomi, A Yoshidome, F Abe and K Osakada, International Journal of Machine Tools and Manufacture 1999, vol. 39, pp. 237-252.

    Article  Google Scholar 

  24. F Verhaeghe, T Craeghs, J Heulens and L Pandelaers, Acta Materialia 2009, vol. 57, pp. 6006-6012.

    Article  Google Scholar 

  25. MF Zaeh and G Branner, Production Engineering 2010, vol. 4, pp. 35-45.

    Article  Google Scholar 

  26. K Dai and L Shaw, Acta Materialia 2004, vol. 52, pp. 69-80.

    Article  Google Scholar 

  27. S Kolossov, E Boillat, R Glardon, P Fischer and M Locher, International Journal of Machine Tools and Manufacture 2004, vol. 44, pp. 117-123.

    Article  Google Scholar 

  28. IA Roberts, CJ Wang, R Esterlein, M Stanford and DJ Mynors, International Journal of Machine Tools and Manufacture 2009, vol. 49, pp. 916-923.

    Article  Google Scholar 

  29. A Hussein, L Hao, C Yan and R Everson, Materials & Design 2013, vol. 52, pp. 638-647.

    Article  Google Scholar 

  30. T.H.C. Childs, C. Hauser, and M. Badrossamay: in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2005, vol. 219, pp. 339–57.

  31. D Deng and H Murakawa, Computational materials science 2006, vol. 37, pp. 269-277.

    Article  Google Scholar 

  32. H Ding and YC Shin, Journal of Manufacturing Science and Engineering 2014, vol. 136, p. 041003.1–11.

    Google Scholar 

  33. L Ding, X Zhang and CR Liu, Journal of Manufacturing Science and Engineering 2014, vol. 136, p. 041020.

    Google Scholar 

  34. W Hammami, G Gilles, AM Habraken and L Duchêne, International journal of material forming 2011, vol. 4, pp. 205-215.

    Article  Google Scholar 

  35. F Bridier, DL McDowell, P Villechaise and J Mendez, International Journal of Plasticity 2009, vol. 25, pp. 1066-1082.

    Article  Google Scholar 

  36. N.R. Barton, J.V. Bernier, R.A. Lebensohn, and A.D. Rollett: in Electron Backscatter Diffraction in Materials Science, Springer, New York, 2009, pp 155–67.

  37. B.E. Stucker, K. Zeng, S. Xu, N. Patil, C. Teng, T. Sublette, and D. Pal: in Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2014.

  38. D. Pal and B.E. Stucker: in Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2012.

  39. J Zhang and L Zhang, Mathematical Problems in Engineering 2013, vol. 2013, pp. 1-12.

    Google Scholar 

  40. J.C. Simo and T.J.R. Hughes: Computational Inelasticity, Springer, New York, 2008.

  41. H. Gong, H. Gu, J.J.S. Dilip, D. Pal, A. Hicks, H. Doak, and B.E. Stucker: in Solid Freeform Symposium, Austin, Texas, 2014.

Download references

Acknowledgments

The authors would like to thank Dr. Khalid Rafi at Nanyang Technological University, Mr. Hengfeng Gu at North Carolina State University, and Dr. Haijun Gong and Mr. Ashabul Anam at University of Louisville for their insightful discussions with the authors. Funding: The authors would like to gratefully acknowledge the funding support from the Office of Naval Research (N000141110689 & N000140710633), the Air Force Research Laboratory (as a subcontractor to Mound Laser & Photonics Center on three SBIR projects), the National Institute of Standards and Technology (70NANB12H262), and the National Science Foundation (CMMI-1234468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepankar Pal.

Additional information

Manuscript submitted December 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Patil, N., Zeng, K. et al. An Efficient Multi-Scale Simulation Architecture for the Prediction of Performance Metrics of Parts Fabricated Using Additive Manufacturing. Metall Mater Trans A 46, 3852–3863 (2015). https://doi.org/10.1007/s11661-015-2903-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2903-7

Keywords

Navigation