Skip to main content
Log in

Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

  • Symposium: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.N. Levy, R. Schindel, and J.P. Kruth: CIRP Ann., 2003, vol. 52, pp. 589–609.

    Article  Google Scholar 

  2. K.V. Wong and A. Hernandez: ISRN Mech. Eng., 2012, vol. 2012, pp. 1–10.

    Article  Google Scholar 

  3. I. Campbell, D.L. Bourell, and I. Gibson: Rapid Prototyping J., 2012, vol. 18, pp. 255–58.

    Article  Google Scholar 

  4. S. Masood and W. Song: Mater. Des., 2004, vol. 25, pp. 587–94.

    Article  Google Scholar 

  5. D.L. Bourell, T.J. Watt, D.K. Leigh, and B. Fulcher: Phys. Procedia, 2014, vol. 56, pp. 147–56.

    Article  Google Scholar 

  6. W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28.

    Article  Google Scholar 

  7. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1–14.

    Article  Google Scholar 

  8. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–07.

    Article  Google Scholar 

  9. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf: Eng. Fract. Mech., 2014, vol. 120, pp. 15–25.

    Article  Google Scholar 

  10. B. Vrancken, L. Thijs, J.-P. Kruth, and J. van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–85.

    Article  Google Scholar 

  11. L. Thijs, F. Verhaeghe, T. Craeghs, J. van Humbeeck, and J.-P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.

    Article  Google Scholar 

  12. T. Niendorf and F. Brenne: Mater. Charact., 2013, vol. 85, pp. 57–63.

    Article  Google Scholar 

  13. B. Song, S. Dong, Q. Liu, H. Liao, and C. Coddet: Mater. Des., 2014, vol. 54, pp. 727–33.

    Article  Google Scholar 

  14. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe: CIRP Ann., 2004, vol. 53, pp. 195–98.

    Article  Google Scholar 

  15. G. Strano, L. Hao, R.M. Everson, and K.E. Evans: J. Mater. Process. Technol., 2013, vol. 213, pp. 589–97.

    Article  Google Scholar 

  16. I. Yadroitsev and I. Smurov: Phys. Procedia, 2011, vol. 12, pp. 264–70.

    Article  Google Scholar 

  17. S. Leuders, T. Lieneke, S. Lammers, T. Tröster, and T. Niendorf: J. Mater. Res., 2014, vol. 29, pp. 1911–19.

    Article  Google Scholar 

  18. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder: Mater. Des., 2012, vol. 34, pp. 159–69.

    Article  Google Scholar 

  19. E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann: Phys. Procedia, 2014, vol. 56, pp. 371–78.

    Article  Google Scholar 

  20. Y. Murakami and M. Endo: Int. J. Fatigue, 1994, vol. 16, pp. 163–82.

    Article  Google Scholar 

  21. H. Danninger and B. Weiss: J. Mater. Process. Technol., 2003, 143-144, pp. 179–84.

    Article  Google Scholar 

  22. Y. Murakami: Metal fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, Boston, 2002, pp. 57-74.

    Book  Google Scholar 

  23. T. Mann: Int. J. Fatigue, 2007, vol. 29, pp. 1393–1401.

    Article  Google Scholar 

  24. A. Spagnoli: Chaos, Solitons Fractals, 2004, vol. 22, pp. 589–98.

    Article  Google Scholar 

  25. D. Dini, D. Nowell, and I.N. Dyson: Tribol. Int., 2006, vol. 39, pp. 1158–65.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Direct Manufacturing Research Center (DMRC), its industry partners and the state of North Rhine Westphalia for financial support of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Leuders.

Additional information

Manuscript submitted December 16, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuders, S., Vollmer, M., Brenne, F. et al. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting. Metall Mater Trans A 46, 3816–3823 (2015). https://doi.org/10.1007/s11661-015-2864-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2864-x

Keywords

Navigation