Skip to main content
Log in

Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, varying powder particle size fractions (<25, 25 to 45, 45 to 63 µm) of a TRIP steel powder were compacted by spark plasma sintering (SPS). Densification initiated at a slightly lower temperature with decreasing particle size due to increasing green density. With decreasing powder particle size fraction, the as-sintered materials exhibited smaller grain sizes. Compression tests revealed a slight decrease of the compressive yield strength with increasing particle size and, accordingly, larger grain size. A few large deformation bands formed in bigger grains, while many thin deformation bands were formed in smaller grains. α′-Martensite nuclei formed successively inside the deformation bands, reducing the mean free path of (partial) dislocation slip. Due to the size of the deformation bands, α′-martensite formation started at lower strains with increasing particle size. When α′-martensite formation was initiated, work hardening was influenced more by α′-martensite formation than by the grain size of the steel matrix. Hence, work hardening increased with increasing particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–77.

    Article  Google Scholar 

  2. O.D. Neikov: Handbook of Non-Ferrous Metal Powders, 1st ed., Elsevier, Oxford, 2009, pp. 102–142.

    Book  Google Scholar 

  3. H. Schumann and H. Oettel: Metallografie, 14th ed., Wiley-VCH, Weinheim, 2005, pp. 454–57.

    Google Scholar 

  4. R. Riedel and I-W. Chen: Ceramics Science and Technology, vol. 3, Wiley-VCH, Weinheim, 2012, pp. 3-156.

    Google Scholar 

  5. Z.H. Zhang, F.C. Wang, S.K. Lee, Y. Liu, J.W. Cheng, Y. Liang: Mater. Sci. Eng. A, 2009, vol. 523, pp. 134–38.

    Article  Google Scholar 

  6. S. Diouf and A. Molinari: Powder Technol., 2012, vol. 221, pp. 220–27.

    Article  Google Scholar 

  7. Z. Xu, C. Jia, C. Kuang, K. Chu, X. Qu: J. Alloy. Compd., 2009, vol. 484, pp.924–28.

    Article  Google Scholar 

  8. M. Pellizzari, A. Fedrizzi, M. Zadra: Mater. Design, 2011, vol. 32, pp. 1796-805.

    Article  Google Scholar 

  9. Y.F. Yang, H. Imai, K. Kondoh, M. Qian, Int. J. Powder Metall., 2014, vol. 50, no. 1, pp. 41-47.

    Google Scholar 

  10. L. Krüger, S. Wolf, S. Martin, A. Jahn, A. Weiß, P.R. Scheller: Steel Res. Int., 2011, vol. 82, pp.1087–93.

    Article  Google Scholar 

  11. S. Wolf, S. Martin, L. Krüger, U. Martin: Mater. Sci. Eng. A, 2014, vol. 594, pp. 72–81.

    Article  Google Scholar 

  12. S. Decker, L. Krüger, S. Richter, S. Martin, U. Martin: Steel Res. Int., 2012, vol. 83, pp. 521–28.

    Article  Google Scholar 

  13. M. Umemoto and W.S. Owen: Metall. Trans., 1974, vol. 5, pp. 2041–46.

    Article  Google Scholar 

  14. I. Tamura: Metal Sci., 1982, vol. 16, pp. 245–53.

    Article  Google Scholar 

  15. S. Martin: Deformationsmechanismen bei verschiedenen Verformungstemperaturen in austenitischem TRIP/TWIP-Stahl, 1st ed., Freiberger Forschungshefte, Freiberg, 2014, pp. 37, 125–32.

  16. N.M. Rahaman: Ceramic Processing and Sintering, 2nd ed., Marcel Dekker Inc., New York, 2003, pp. 797-867.

    Google Scholar 

  17. B. Kieback and J. Trapp, Pulvermetallurgie, Hagener Symposium, 2011, pp. 47–75.

  18. L.A. Stanciu, V.Y. Kodash, J.R. Groza, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2633–38.

    Article  Google Scholar 

  19. S. Martin, S. Decker, L. Krüger, U. Martin, D. Rafaja, Adv. Eng. Mater., 2013, vol. 15, no. 7, pp. 600–608.

    Article  Google Scholar 

  20. R.M. German: Sintering from Empirical Observations to Scientific Principles, 1st ed., Elsevier, Oxford, 2014, pp. 188-226.

    Google Scholar 

  21. A. Jahn, A. Kovalev, A. Weiß, P.R. Scheller: Steel Res. Int., 2011, vol. 82, no. 9, pp. 1108–12.

    Article  Google Scholar 

  22. A. Weidner, A. Müller, A. Weiss, H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68–76.

    Article  Google Scholar 

  23. P. Franke, H.J. Seifert: Landolt-Börnstein Group IV, vol. 19, Springer, Berlin, 2012.

    Google Scholar 

  24. E.O. Hall: Proc. Phy. Soc. B, 1951, 64, pp. 747–53.

    Article  Google Scholar 

  25. T. Byun: Acta Mater., 2003, vol. 51, pp. 3063-71.

    Article  Google Scholar 

  26. J. Talonen, H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  Google Scholar 

  27. S. Martin, C. Ullrich, D. Šimek, U. Martin, D. Rafaja: J. Appl. Cryst., 2011, vol. 44, pp. 779–87.

    Article  Google Scholar 

  28. D. Rafaja, C. Krbetschek, C. Ullrich, S. Martin: J. Appl. Cryst., 2014, vol. 47, pp. 936–47.

    Article  Google Scholar 

  29. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.

    Article  Google Scholar 

  30. J. Venables: Phil. Mag., 1962, vol. 7, pp. 35–44.

    Article  Google Scholar 

  31. S. Martin, S. Wolf, U. Martin, L. Krüger, A. Jahn: Conf. Proc. of ESOMAT 2009, Prague, 05022.

  32. H. Idrissi, K. Renard, D. Schryvers, P. Jacques, Scripta Mater., 2010, vol. 63, pp. 961–64.

    Article  Google Scholar 

  33. S. Lee, B. De Cooman, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 710–16.

    Google Scholar 

  34. Y. Tomita, T. Iwamoto: Int. J. Mech. Sci., 1995, vol. 37, pp. 1295–305.

    Article  Google Scholar 

  35. D. Geissler, J. Freudenberger, A. Kauffmann, M. Krautz, H. Klauss, A. Voss, J. Eickemeyer, L. Schultz: Acta Mater., 2011,vol. 59, pp. 7711–23.

    Article  Google Scholar 

  36. C.W. Sinclair, R. Hoagland, Acta Mater., 2008, vol. 56, pp. 4160–71.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for supporting the investigations, which were part of the Collaborative Research Center TRIP Matrix Composites (SFB 799). For the production of the steel powder, the authors would like to thank the Institute of Iron and Steel Technology at the TU Bergakademie Freiberg. Furthermore, the authors thank the Institute of Ceramic, Glass and Construction Materials at the TU Bergakademie Freiberg for carrying out the measurements of the powder particle size distribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Decker.

Additional information

Manuscript submitted August 1, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decker, S., Martin, S. & Krüger, L. Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering. Metall Mater Trans A 47, 170–177 (2016). https://doi.org/10.1007/s11661-015-2861-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2861-0

Keywords

Navigation