Skip to main content
Log in

Evolution of Intergranular Stresses in a Martensitic and an Austenitic NiTi Wire During Loading–Unloading Tensile Deformation

Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ synchrotron X-ray diffraction testing was carried out on a martensitic and an austenitic NiTi wire to study the evolution of internal stresses and the stress-induced martensite (SIM) phase transformation during room temperature tensile deformation. From the point of lattice strain evolution, it is concluded that (1) for the martensitic NiTi wire, detwinning of the [011]B19′ type II twins and the {010}B19′ compound twins is responsible for internal strains formed at the early stage of deformation. (2) The measured diffraction moduli of individual martensite families show large elastic anisotropy and strong influences of texture. (3) For the austenitic NiTi wire, internal residual stresses were produced due to transformation-induced plasticity, which is more likely to occur in austenite families that have higher elastic moduli than their associated martensite families. (4) Plastic deformation was observed in the SIM at higher stresses, which largely decreased the lower plateau stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. T.W. Duerig, A. Pelton, and D. Stockel: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 149–60.

    Article  Google Scholar 

  2. B. Thierry, Y. Merhi, L. Bilodeau, C. Trepanier, and M. Tabrizian: Biomaterials, 2002, vol. 23, pp. 2997–3005.

    Article  Google Scholar 

  3. J.E. Schaffer, E.A. Nauman, and L.A. Stanciu: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 984–94.

    Article  Google Scholar 

  4. Y. Liu and Z.L. Xie: Acta Mater., 2003, vol. 51, pp. 5529–43.

    Article  Google Scholar 

  5. T. Ezaz, J. Wang, H. Sehitoglu, and H.J. Maier: Acta Mater., 2013, vol. 61, pp. 67–78.

    Article  Google Scholar 

  6. D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.-X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills: Acta Mater, 2009, vol. 57, pp. 3549–61.

    Article  Google Scholar 

  7. S.W. Robertson, A.R. Pelton, and R.O. Ritchie: Int. Mater. Rev., 2012, vol. 57, pp. 1–36.

    Article  Google Scholar 

  8. A.L. McKelvey and R.O. Ritchie: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 731–43.

    Article  Google Scholar 

  9. J.E. Schaffer: JMEPEG, 2009, vol. 18, pp. 582–87.

    Article  Google Scholar 

  10. T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, and H.P. Karnthaler: J. Mech. Phys. Solids, 2007, vol. 55, pp. 419–44.

    Article  Google Scholar 

  11. G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, and K. Otsuka, Acta Mater., 2004, vol. 52, pp. 4351–62.

    Article  Google Scholar 

  12. M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, and G. Eggeler: Acta Mater., 2013, vol. 61, pp. 3667–86.

    Article  Google Scholar 

  13. K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.

    Article  Google Scholar 

  14. R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H.J. Maier: Acta Mater., 2004, vol. 52, 3383–3402.

    Article  Google Scholar 

  15. R.M. Tabanli, N.K. Simha, and B.T. Berg: Mater. Sci. Eng., 1999, vol. 273–275, pp. 644–48.

    Article  Google Scholar 

  16. R.M. Tabanli, N.K. Simha, and B.T. Berg: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1866–69.

    Article  Google Scholar 

  17. S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, and X.D. Han: Acta Mater., 2010, vol. 58, pp. 3357–66.

    Article  Google Scholar 

  18. N.G. Jones and D. Dye: Intermetallics, 2011, vol. 19, pp. 1348–58.

    Article  Google Scholar 

  19. B. Ye, B.S. Majumdar, and I. Dutta: Acta Mater., 2009, vol. 57, pp. 2403–17.

    Article  Google Scholar 

  20. S. Qiu, B. Clausen, S.A. Padula II, R.D. Noebe, and R. Vaidyanathan: Acta Mater., 2011, vol. 59, pp. 5055–66.

    Article  Google Scholar 

  21. A.P. Stebner, D.W. Brown, and L.C. Brinson: Appl. Phys. Lett., 2013, vol. 102, p. 211908.

    Article  Google Scholar 

  22. A.P. Stebner, D.W. Brown, and L.C. Brinson, Acta Mater., 2013, vol. 61, pp. 1944–56.

    Article  Google Scholar 

  23. S. Rajagopalan and A.L. Little, M.A.M. Bourke, and R. Vaidyanathan: Appl. Phys. Lett., 2005, vol. 86, p. 081901.

    Article  Google Scholar 

  24. P. Šittner, L. Heller, J. Pilch, C. Curfs, T. Alonso, and D. Favier: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, May 2013.

  25. O. Benafan, S.A. Padula II, R.D. Noebe, T.A. Sisneros, and R. Vaidyanathan: J. Appl. Phys., 2012, vol. 112, p. 093510.

    Article  Google Scholar 

  26. O. Benafan, R.D. Noebe, S.A. Padula II, A. Garg, B. Clausen, S. Vogel, and R. Vaidyanathan: Int. J. Plast., 2013, vol. 51, pp. 103–21.

    Article  Google Scholar 

  27. P. Šittner, P. Lukáš, V. Novák, M.R. Daymond, and G.M. Swallowe: Mater. Sci. Eng., 2004, vol. 378, pp. 97–104.

    Article  Google Scholar 

  28. S.L. Raghunathan, M.A. Azeem, D. Collins, and D. Dye: Scripta Mater., 2008, vol. 59, pp. 1059–62.

    Article  Google Scholar 

  29. M.L. Young, M.F.-X. Wagner, J. Frenzel, W.W. Schmahl, and G. Eggeler: Acta Mater., 2010, vol. 58, pp. 2344–54.

    Article  Google Scholar 

  30. M.L. Young, S. Gollerthan, A. Baruj, J. Frenzel, W.W. Schmahl, and G. Eggeler: Acta Mater., 2013, vol. 61, pp. 5800–06.

    Article  Google Scholar 

  31. M. Hasan, W.W. Schmahl, K. Hackl, R. Heinen, J. Frenzel, S. Gollerthan, G. Eggeler, M. Wagner, J. Khalil-Allafi, and A. Baruj: Mater. Sci. Eng., 2008, vol. 481–482, pp. 414–19.

    Article  Google Scholar 

  32. M.R. Daymond, M.L. Young, J.D. Almer, and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 3929–42.

    Article  Google Scholar 

  33. S.W. Robertson, A. Mehta, A.R. Pelton, and R.O. Ritchie: Acta Mater., 2007, vol. 55, pp. 6198–6207.

    Article  Google Scholar 

  34. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 777–86.

    Article  Google Scholar 

  35. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: Acta Mater., 1999, vol. 4, pp. 3353–66.

    Article  Google Scholar 

  36. S. Cai, J.E. Schaffer, Y. Ren, and C. Yu: Appl. Phys. Lett., 2013, vol. 103, p. 241909.

    Article  Google Scholar 

  37. S. Cai, M.R. Daymond, Y. Ren, and J.E. Schaffer: Acta Mater., 2013, vol. 61, pp. 6830–42.

    Article  Google Scholar 

  38. S. Cai, M.R. Daymond, and Y. Ren: Mater. Sci. Eng. A, 2013, vol. 580, pp. 209–16.

    Article  Google Scholar 

  39. A.P. Hammersley: FIT2D V9.129 Reference Manual V3.1, ESRF Internal Report, 1998.

  40. A.C. Larson and R.B. Von Dreele: GSAS—General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, 1994.

    Google Scholar 

  41. L. Lutterotti, S. Matthies, H.-R. Wenk, A.S. Schulz, and J.W. Richardson, Jr.: J. Appl. Phys., 1997, vol. 81, p. 594.

    Article  Google Scholar 

  42. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  Google Scholar 

  43. H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H.J. Maier, and Y. Chumlyakov: Acta Mater., 2000, vol. 48, pp. 3311–26.

    Article  Google Scholar 

  44. M. Nishida, S. Ii, K. Kitamura, T. Furukawa, A. Chiba, T. Hara, and K. Hiraga: Scripta Mater., 1998, vol. 39, pp. 1749–54.

    Article  Google Scholar 

  45. A.P. Stebner, S.C. Vogel, R.D. Noebe, T. Sisneros, B. Clausen, D.W. Brown, A. Garg, and L.C. Brinson: J. Mech. Phys. Solids, 2013, vol. 61, pp. 2303–30.

    Article  Google Scholar 

  46. J.X. Zhang, M. Sato, and A. Ishida: Acta Mater., 2006, vol. 54, pp. 1185–98.

    Article  Google Scholar 

  47. M.F.-X. Wagner and W. Windl: Acta Mater., 2008, vol. 56, pp. 6232–45.

    Article  Google Scholar 

  48. Y. Liu and D. Favier: Acta Mater., 2000, vol. 48, pp. 3489–99.

    Article  Google Scholar 

  49. H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao: Acta Metall. Mater., 1991, vol. 39, pp. 2069–80.

    Article  Google Scholar 

  50. O. Mercier, K.N. Melton, G. Gremaud, and J. Hägi: J. Appl. Phys., 1980, vol. 51, 1833–34.

    Article  Google Scholar 

  51. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  Google Scholar 

Download references

Acknowledgments

Use of the synchrotron X-ray at APS was granted by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Data analysis was performed using the FIT2D, GSAS and Maud software. DSC test was performed by our colleague J. Kolhoff. SC and JES benefited from discussions with Prof. A. Stebner at Colorado School of Mines, and gratefully acknowledge Fort Wayne Metals management for their continuous support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cai.

Additional information

Manuscript submitted October 29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Schaffer, J.E., Yu, C. et al. Evolution of Intergranular Stresses in a Martensitic and an Austenitic NiTi Wire During Loading–Unloading Tensile Deformation. Metall Mater Trans A 46, 2476–2490 (2015). https://doi.org/10.1007/s11661-015-2845-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2845-0

Keywords

Navigation