Skip to main content
Log in

Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alloy 617 was exposed to He-CO-CO2 environments with \( P_{\text{CO}} /P_{{{\text{CO}}_{2} }} \) of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.E. Mizia: Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy, INL/EXT-08-14054, 2008.

  2. J.K. Wright: Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan, INL/EXT-08-14107, 2010.

  3. C. Cabet, A. Terlain, P. Lett, L. Guétaz, and J.-M. Gentzbittel: Mater. Corros., 2006, vol. 57, pp. 147–53.

    Article  Google Scholar 

  4. C. Cabet, J. Chapovaloff, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, and M. Pijolat: J. Nucl. Mater., 2008, vol. 375, pp. 173–84.

    Article  Google Scholar 

  5. K. Natesan, A. Purohit, and S.W. Tam: Materials Behavior in HTGR Environments; NUREG/CR-6824, ANL-02/37, Argonne, IL, 2003.

  6. J.K. Wright, L.J. Carroll, C. Cabet, T.M. Lillo, J.K. Benz, J.A. Simpson, W.R. Lloyd, J.A. Chapman, and R.N. Wright: Nucl. Eng. Des., 2012, vol. 251, pp. 252–60.

    Article  Google Scholar 

  7. R. Wright, J. Wright, and C. Cabet: in Comprehensive Nuclear Materials, Elsevier, Amsterdam, 2012, pp. 251–77.

  8. R.N. Wright: Summary of Studies of Aging and Environmental Effects on Inconel 617 and Haynes 230, INL/EXT-06-11750, 2006.

  9. H.J. Christ, D. Schwanke, and T. Uihlein: Oxid. Met., 1988, vol. 30, pp. 1–26.

    Article  Google Scholar 

  10. H.J. Christ, U. Künecke, K. Meyer, and H.G. Sockel: Oxid. Met., 1988, vol. 30, pp. 27–51.

    Article  Google Scholar 

  11. W.J. Quadakkers and H. Schuster: Nucl. Technol., 1984, vol. 66, pp. 383–91.

    Google Scholar 

  12. D. Kumar, R.R. Adharapurapu, T.M. Pollock, and G.S. Was: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1245–65.

    Article  Google Scholar 

  13. R.R. Adharapurapu, D. Kumar, J. Zhu, and T.M. Pollock: Corros. Sci., 2011, vol. 53, pp. 388–98.

    Article  Google Scholar 

  14. W.J. Quadakkers and H. Schuster: Mater. Corros., 1985, vol. 36, pp. 141–50.

    Article  Google Scholar 

  15. C. Cabet and F. Rouillard: J. Nucl. Mater., 2009, vol. 392, pp. 235–42.

    Article  Google Scholar 

  16. C. Cabet and B. Duprey: Nucl. Eng. Des., 2012, vol. 251, pp. 139–45.

    Article  Google Scholar 

  17. Y. Hosoi and S. Abe: Metall. Trans. A, 1975, vol. 6, pp. 1171–78.

    Article  Google Scholar 

  18. H. Yun, P. Ennis, H. Nickel, and H. Schuster: J. Nucl. Mater., 1984, vol. 125, pp. 258–72.

    Article  Google Scholar 

  19. C. Wagner: Zeitschrift Fur Elektrochemie, Berichte Der Bunsengesellschaft Fur Phys. Chemie, 1959, vol. 63, pp. 772–82.

    Google Scholar 

  20. R.A. Rapp: Corrosion, 1965, vol. 21, pp. 382–401.

    Article  Google Scholar 

  21. D.J. Young: High Temperature Oxidation and Corrosion of Metals, 1st ed., Elsevier, Oxford, UK, 2008.

    Google Scholar 

  22. F. Gesmundo and Y. Niu: Oxid. Met., 2003, vol. 60, pp. 347–70.

    Article  Google Scholar 

  23. F. Gesmundo and Y. Niu: Oxid. Met., 2004, vol. 62, pp. 357–74.

    Article  Google Scholar 

  24. F. Maak: Zeitschrift Für Met., 1961, vol. 52, p. 538.

    Google Scholar 

  25. G. Gulsoy and G.S. Was: Metall. Mater. Trans. A, 2014, DOI:10.1007/s11661-014-2629-y.

  26. D.P. Whittle, Y. Shida, G.C. Wood, F.H. Stott, and B.D. Bastow: Philos. Mag. A, 1982, vol. 46, p. 931.

    Article  Google Scholar 

  27. F.H. Stott, G.C. Wood, D.P. Whittle, B.D. Bastow, Y. Shida, and A. Martinez-Villafane: Solid State Ionics, 1984, vol. 12, pp. 365–74.

    Article  Google Scholar 

  28. F.H. Stott and G.C. Wood: Mater. Sci. Technol., 1988, vol. 4, pp. 1072–78.

    Article  Google Scholar 

  29. D. Kumar, C.J. Torbet, and G.S. Was: Meas. Sci. Technol., 2009, vol. 20, p. 95708.

    Article  Google Scholar 

  30. H.C. Yi, S.W. Guan, W.W. Smeltzer, and A. Petric: Acta Metall. Mater., 1994, vol. 42, pp. 981–90.

    Article  Google Scholar 

  31. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  Google Scholar 

  32. S.W. Guan and W.W. Smeltzer: Oxid. Met., 1994, vol. 42, pp. 375–91.

    Google Scholar 

  33. J-W. Park and C.J. Altstetter: Metall. Trans. A, 1987, vol. 18, pp. 43–50.

    Article  Google Scholar 

  34. O. Kubaschewski and C.B. Alcock: Materials Thermochemistry, 6th ed., Oxford: Pergamon Press, 1993.

    Google Scholar 

  35. J.A. Nesbitt and R.W. Heckel: Metall. Trans. A, 1987, vol. 18, pp. 2075–86.

    Article  Google Scholar 

  36. C.B. Alcock and P.B. Brown: Met. Sci., 1969, vol. 3, pp. 116–20.

    Article  Google Scholar 

  37. R. Barlow and P.J. Grundy: J. Mater. Sci., 1969, vol. 4, pp. 797–801.

    Article  Google Scholar 

  38. S. Goto, K. Nomaki, and S. Koda: J. Japan Inst. Met., 1967, vol. 31, pp. 600–606.

    Google Scholar 

  39. G.J. Lloyd and J.W. Martin: Met. Sci., 1973, vol. 7, pp. 75–75.

    Article  Google Scholar 

  40. J. Lloyd and J.W. Martin: Met. Sci. J., 1972, vol. 6, pp. 7–11.

    Article  Google Scholar 

  41. R.A. Kerr: Ph.D. Thesis, Ohio State University Columbus, OH, 1972.

  42. S.P. Zholobov and M.D. Malev: Sov. Phys. Tech. Phys., 1971, vol. 16, pp. 488–94.

    Google Scholar 

  43. E.A. Brandes: Smithells Metals Reference Book, 6th ed., Butterworths, London, 1983.

    Google Scholar 

  44. 44 S. Garruchet, O. Politano, P. Arnoux, and V. Vignal: Solid State Commun., 2010, vol. 150, pp. 439–42.

    Article  Google Scholar 

  45. H.O. Nam, I.S. Hwang, K.H. Lee, and J.H. Kim: Corros. Sci., 2013, vol. 75, pp. 248–55.

    Article  Google Scholar 

  46. S. Perusin, B. Viguier, D. Monceau, L. Ressier, and E. Andrieu: Acta Mater., 2004, vol. 52, pp. 5375–80.

    Article  Google Scholar 

  47. S. Perusin, D. Monceau, and E. Andrieu: J. Electrochem. Soc., 2005, vol. 152, p. E390.

    Article  Google Scholar 

  48. Y. Shida, F.H. Stott, B.D. Bastow, D.P. Whittle, and G.C. Wood: Oxid. Met., 1982, vol. 18, p. 93.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the DOE Office of Nuclear Energy’s Nuclear Energy University Programs under award 00087993. The authors also acknowledge NSF awards DMR-0320740 that made possible the acquisition of the FEI Nova Dual FIB Workstation/SEM at the University of Michigan Electron Microbeam Analysis Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokce Gulsoy.

Additional information

Manuscript submitted June 30, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulsoy, G., Was, G.S. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C). Metall Mater Trans A 46, 1628–1638 (2015). https://doi.org/10.1007/s11661-015-2741-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2741-7

Keywords

Navigation