Skip to main content

Advertisement

Log in

Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

  • Symposium: Dynamic Behavior of Materials VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumes using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meyers, M.A. and Aimone, C.T.: Prog. Mater. Sci., 1983. 28: p. 1–96.

    Article  Google Scholar 

  2. Meyers, M.A., Dynamic Behavior of Materials. 1994, New York: John Wiley & Sons, Inc.

    Book  Google Scholar 

  3. Minich, R.W., Cazamias, J.U., Kumar, M., and Schwartz, A.J.: Metall. Mater. Trans. A, 2004. 35A: p. 2663–73.

    Article  Google Scholar 

  4. Chen, X., Asay, J.R., Dwivedi, S.K., and Field, D.P.: J. Appl. Phys., 2006. 99: 023528

    Article  Google Scholar 

  5. Wayne, L., Krishnan, K., DiGiacomo, S., Kovvali, N., Peralta, P., Luo, S.-N., Greenfield, S., Byler, D., Paisley, D., McClellan, K.J., Koskelo, A., and Dickerson, R.: Scripta mater., 2010. 63: p. 1065–68.

    Article  Google Scholar 

  6. Peralta, P., DiGiacomo, S., Hashemian, S., Luo, S.-N., Paisley, D.L., Dickerson, R., Loomis, E., Byler, D., McClellan, K.J., and D’Armas, H.: Int. J. Damage Mech., 2009. 18: p. 393-413.

    Article  Google Scholar 

  7. Escobedo, J.P., Dennis-Koller, D., Cerreta, E.K., Patterson, B.M., Bronkhorst, C.A., Hansen, B.L., Tonks, D., and Lebensohn, R.A.: J. Appl. Phys., 2011. 110(3): p. 033513.

    Article  Google Scholar 

  8. Cerreta, E.K., Escobedo, J.P., Perez-Bergquist, A., Koller, D.D., Trujillo, C.P., Gray Iii, G.T., Brandl, C., and Germann, T.C.: Scripta Mater., 2012. 66(9): p. 638–41.

    Article  Google Scholar 

  9. Luo, S.-N., Germann, T.C., Tonks, D.L., and An, Q.: J. Appl. Phys., 2010. 108(9): p. 093526.

    Article  Google Scholar 

  10. Han, W., An, Q., Luo, S., Germann, T., Tonks, D., and Goddard, W.: Phys. Rev. B, 2012. 85(2): 024107

    Article  Google Scholar 

  11. Fensin, S.J., Valone, S.M., Cerreta, E.K., and Gray, G.T.: J. Appl. Phys., 2012. 112(8): p. 083529.

    Article  Google Scholar 

  12. Fensin, S.J., Escobedo-Diaz, J.P., Brandl, C., Cerreta, E.K., Gray Iii, G.T., Germann, T.C., and Valone, S.M.: Acta Mater., 2014. 64(0): p. 113-122.

    Article  Google Scholar 

  13. Sutton, A.P. and Ballufi, R.W., Interfaces in Crystalline Materials. 1995, New York: Oxford University Press.

    Google Scholar 

  14. Cochran, S. and Banner, D.: J. Appl. Phys., 1977. 48: 2729

    Article  Google Scholar 

  15. Follansbee, P.S. and Kocks, U.F.: Acta Metall., 1988. 36: p. 81-93.

    Article  Google Scholar 

  16. Steinberg, D.J., Cochran, S.G. and Guinan, M.W.: J. Appl. Phys., 1980. 51(3): p. 1498–504.

    Article  Google Scholar 

  17. Zerilli, F.J. and Armstrong, R.W.: J. Appl. Phys, 1987. 61: p. 1816–25.

    Article  Google Scholar 

  18. Gurson, A.L.: J. Eng. Mater. Technol., 1977. 99: p. 2-15.

    Article  Google Scholar 

  19. Tvergaard, V. and Needleman, A.: Acta Metall., 1984. 32: p. 157–69.

    Article  Google Scholar 

  20. Chaboche, J.L.: J.Appl. Mech., 1988. 55: p. 59-64.

    Article  Google Scholar 

  21. Lemaitre, J. and Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. 2005, Berlin: Springer-Verlag.

    Google Scholar 

  22. Czarnota, C., Jacques, N., Mercier, S., and Molinari, A.: J. Mech. Phys. Sol., 2008. 56: p. 1624–50.

    Article  Google Scholar 

  23. Wright, T.W. and Ramesh, K.T.: J. Mech. Phys. Sol., 2008. 56: p. 336–59.

    Article  Google Scholar 

  24. Becker, R.: Int. J. Plast., 2004. 20: p. 1983-2006.

    Article  Google Scholar 

  25. Lukyanov, A.A.: Int. J. Plast., 2008. 24:140–67

    Article  Google Scholar 

  26. Luscher, D.J., Bronkhorst, C.A., Alleman, C.N., and Addessio, F.L.: J. Mech. Phys. Sol., 2013. 61(9): p. 1877–94.

    Article  Google Scholar 

  27. Lloyd, J.T., Clayton, J.D., Austin, R.A., and McDowell, D.L.: J. Mech. Phys. Sol., 2014. 69: p. 14-32.

    Article  Google Scholar 

  28. Potirniche, G.P., Horstemeyer, M.F. and Ling, X.W.: Mech. Mater., 2007. 39: p. 941–52.

    Article  Google Scholar 

  29. Vignjevic, R., Djordjevic, N., Campbell, J., and Panov, V.: Int. J. Impact Eng., 2012. 49: p. 61-76.

    Article  Google Scholar 

  30. Clayton, J.D.: J. Mech. Phys. Sol., 2005. 53(2): p. 261-301.

    Article  Google Scholar 

  31. Vogler, T. and Clayton, J.: J. Mech. Phys. Sol., 2008. 56(2): p. 297-335.

    Article  Google Scholar 

  32. Jawad, F.F. and Zikry, M.A.: Int. J. Damage Mech., 2009. 18(4): p. 341–69.

    Article  Google Scholar 

  33. Peralta, P., Llanes, L., Bassani, J., and Laird, C.: Phil. Mag. A, 1994. 70(1): p. 219–32.

    Article  Google Scholar 

  34. Escobedo, J.P., Cerreta, E.K., Dennis-Koller, D., Trujillo, C.P., and Bronkhorst, C.A.: Phil. Mag., 2013. 93(7): p. 833–46.

    Article  Google Scholar 

  35. Kocks, U.F.: Metall. Trans., 1970. 1: p. 1121–43.

    Google Scholar 

  36. Luo, S.-N., Peralta, P., Ma, C., Paisley, D.L., Greenfield, S.R., and Loomis, E.N.: Appl. Surf. Sci., 2007. 253: p. 9457–66.

    Article  Google Scholar 

  37. T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, and A.V. Utkin: in High-Pressure Shock Compression of Condensed Matter, L. Davison and Y. Horie, eds., Springer-Verlag, New York, 2003.

  38. Jones, O.E. and Motes, J.D.: J. Appl. Phys., 1969. 40(12): p. 4920–28.

    Article  Google Scholar 

  39. Lee, E.H.: J. Appl. Mech., 1969. 36(1): p. 1–6.

    Article  Google Scholar 

  40. Rice, J.R.:.J. Mech. Phys. Solids, 1971. 19: p. 433–55.

    Article  Google Scholar 

  41. Bammann, D.J. and Aifantis, E.C.: Nucl. Eng. Des., 1989. 116: p. 355–62.

    Article  Google Scholar 

  42. Asaro, R.J.: Adv. Appl. Mech., 1983. 23: 1–115.

    Article  Google Scholar 

  43. Staroselsky, A. and Cassenti, B.N.: Mech. Mater., 2010. 42(10): p. 945–59.

    Article  Google Scholar 

  44. Belytschko, T., Liu, W.K., and Moran, B., Nonlinear Finite Elements for Continua and Structures. 2000, Chichester, England: Wiley.

    Google Scholar 

  45. ABAQUS Software, Abaqus Theory Manual, Dassault Systemes/Simulia, 2010.

  46. Chu, C.C. and Needleman, A.: J. Eng. Mater. Technol., 1980. 102(3): p. 249–56.

    Article  Google Scholar 

  47. Ortiz, M. and Molinari, A.: J. Appl. Mech., 1992. 59: p. 48-53.

    Article  Google Scholar 

  48. Tong, W. and Ravichandran, G.: J. Appl. Mech., 1995. 62: 633–39.

    Article  Google Scholar 

  49. Chin, G.Y. and Mammel, W.L.: Trans. Metall. Soc. AIME, 1967. 239: p. 1400-05.

    Google Scholar 

  50. Peralta, P. and Laird, C.: Acta mater., 1997. 45(12): p. 5129–43.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by LANL under the Laboratory Directed Research and Development (LDRD) program, award # 20060021DR, and by the Department of Energy, National Nuclear Security Administration (NNSA), under Grants # DE-FG52-06NA26169, DE-FG52-10NA29653, and DE-NA0002005. Eric Loomis, Pat Dickerson (LANL), Damian Swift (LLNL), David Wright, Karl Weiss, and Dallas Kingsbury (ASU) are thanked for their help during research work. Access to TRIDENT and the Electron Microscopy Lab at LANL, and the Center for High Resolution Electron Microscopy at ASU is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Peralta.

Additional information

Manuscript submitted April 6, 2014.

Appendix

Appendix

The material constants obtained from the calibration process are given below, listed in order of the equations where they are used.

Equation [5]: Reference shear strain rate \( \dot{\gamma }_{0} \) = 0.001 s−1 and rate sensitivity exponent m = 20

Equation [7]: Initial hardening modulus h 0 = 342 MPa, yield shear stress τ 0 = 26 MPa, which is in good agreement with the value of 22 MPa reported in Reference 38, stage I shear stress τ s = 90 MPa and latent hardening parameter q = 1.4.

Equation [8]: Kinematic hardening parameters k 1 = 104 MPa and k 2 = 185 MPa.

Equations [16]: parameters for the modified GTN damage model q 1 = 1.5 and q 02  = 0.5.

Equation [20]: statistical parameters for void nucleation f N = 0.04, s N = 0.1 and e N = 0.1.

Equation [21]: initial void volume fraction f 0 = 0.0001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, K., Brown, A., Wayne, L. et al. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals. Metall Mater Trans A 46, 4527–4538 (2015). https://doi.org/10.1007/s11661-014-2667-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2667-5

Keywords

Navigation