Skip to main content
Log in

Kinetics of Uniaxial Tensile Flow and Work Hardening Behavior of Type 316L(N) Austenitic Stainless Steel in the Framework of Two-Internal-Variable Approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uniaxial tensile flow and work hardening behavior of type 316L(N) austenitic stainless steel have been examined in the framework of two-internal-variable approach based on the evolution of forest dislocation density and mean free path with plastic strain in the temperature range from 300 K to 1023 K (27 °C to 750 °C) and strain rates ranging from 3.16 × 10−5 to 3.16 × 10−3 s−1. The steel exhibited three-stage work hardening behavior in the variations of θσ d with σ d, where θσ d is the product of instantaneous work hardening rate, θ (θ = dσ d/dε p) and flow stress contribution from dislocation (σ d), and ε p is the true plastic strain. The three-stage work hardening was characterized by a gradual increase in θσ d at low stresses (transient stage) followed by a linear increase in θσ d in stage-II and inverted parabolic hardening at high σ d in stage-III. At all the strain rate and temperature conditions, the flow and work hardening behavior was appropriately described by the two-internal-variable model. The work hardening parameters such as dynamic recovery parameter and final mean free path, and the predicted forest, mobile, and total dislocation densities at uniform plastic strain exhibited three distinct temperature regimes. Anomalous variations in the work hardening parameters with respect to temperature and strain rate observed at intermediate temperatures have been ascribed to the occurrence of dynamic strain aging. At high temperatures, dominance of dynamic recovery has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje: Trans. Indian Inst. Met., 2003, vol. 56, pp. 155-78.

    Google Scholar 

  2. L.A. Norstrom: Metal Sci., 1997, vol. 11, pp. 208-212.

    Article  Google Scholar 

  3. W.S. Ryu, D.W. Kim, W.G. Kim, and H.H. Kuk: Trans. 15th International Conference on Structural Mechanics in Reactor Technology (SMIRT-15), Seoul, Korea, 1999, pp. X-275-82.

  4. V. Ganesan, M.D. Mathew, and K.B.S. Rao: Mater. Sci. Technol., 2009, vol. 25, pp. 614-18.

    Article  Google Scholar 

  5. M.D. Mathew, K. Laha, and V. Ganeshan: Mater. Sci. Eng. A, 1012, vol. 535, pp. 76–83.

  6. K. Farrell and T.S. Byun: J. Nucl. Mater., 2001, vol. 296, pp. 129-38.

    Article  Google Scholar 

  7. T.S. Byun, K. Farrell, E.H. Lee, L.K. Mansur, S.A. Maloy, M.R. James, and W.R. Johnson: J. Nucl. Mater., 2002, vol. 303, pp. 34-43.

    Article  Google Scholar 

  8. P. Ludwik: Elements der technologischen Mechanik, Springer, Leipzig, 1909.

    Book  Google Scholar 

  9. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268-90.

    Google Scholar 

  10. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537-62.

    Google Scholar 

  11. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1-18.

    Article  Google Scholar 

  12. E. Voce: Metallurgia, 1955, vol. 51, pp. 219-26.

    Google Scholar 

  13. D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825-8.

    Article  Google Scholar 

  14. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76-85.

    Article  Google Scholar 

  15. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865-77.

    Article  Google Scholar 

  16. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57-70.

    Article  Google Scholar 

  17. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171-273.

    Article  Google Scholar 

  18. Y. Estrin and L.P. Kubin: Acta Metall., 1986, vol. 34, pp. 2455-64.

    Article  Google Scholar 

  19. Y. Estrin: in Unified Constitutive Laws of Plastic deformation, A.S. Krausz and K. Krausz, eds., Academic Press, San Diego, 1996, pp. 69–106.

  20. Y. Estrin, H. Braasch, and Y. Brechet: J. Eng. Mater. Technol., 1986, vol. 118, pp. 441-7.

    Article  Google Scholar 

  21. F. Barlat, M.V. Glazov, J.C. Brem, and D.J. Lege: Int. J. Plasticity, 2002, vol. 18, pp. 919-39.

    Article  Google Scholar 

  22. W. Roberts and Y. Bergstrom: Acta Metall., 1973, vol. 21, pp. 457-69.

    Article  Google Scholar 

  23. C.S. Pande: Mater. Sci. Eng. A, 2001, vol. 309-310, pp. 328-30.

    Article  Google Scholar 

  24. F. Roters, D. Raabe, and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181-9.

    Article  Google Scholar 

  25. D.J. Michel, J. Moteff, and A.J. Lovell: Acta Metall., 1973, vol. 21, pp. 1269-77.

    Article  Google Scholar 

  26. B.P. Kashyap, K. McTaggart, and K. Tangri: Philos. Mag. A, 1988, vol. 57, pp. 97-114.

    Article  Google Scholar 

  27. B.P. Kashyap: Acta Mater., 2002, vol. 50, pp. 2413-27.

    Article  Google Scholar 

  28. B.K. Choudhary: Metall. Mater. Trans. A, 2014, vol. 45, pp. 302-16.

    Article  Google Scholar 

  29. ASTM E 21-09: “Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials”. ASTM Standards, West Conshohocken, PA, 2009.

  30. ASTM E8/E8M -13a: “Standard Test Methods for Tension Testing of Metallic Materials”. ASTM Standards, West Conshohocken, PA, 2013.

  31. ASTM E 1012-12: “Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application”. ASTM Standards, West Conshohocken, PA, 2013.

  32. E. Pink and A. Grinberg: Mater. Sci. Eng., 1981, vol. 51, pp. 1-8.

    Article  Google Scholar 

  33. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653-63.

    Article  Google Scholar 

  34. J. Nocedal and S.J. Wright: Numerical Optimization, Springer Series in Operations Research. Springer, New York, 2006.

  35. Y. Bergström and H. Hallén: Mater. Sci. Eng., 1982, vol. 55, pp. 49-61.

    Article  Google Scholar 

  36. H. Hallén: Mater. Sci. Eng., 1985, vol. 72, pp. 119-23.

    Article  Google Scholar 

  37. J Christopher and B K Choudhary: Philos. Mag. 2014, vol. 94, pp. 2992-3016.

    Article  Google Scholar 

  38. H.J. Frost and M.F. Ashby: In Deformation Mechanism Maps, Pergamon Press, Oxford, 1982, p. 62.

    Google Scholar 

  39. B.K. Choudhary: Mater. Sci. Eng. A, 2014, vol. 603, pp. 160-8.

    Article  Google Scholar 

  40. X. Feaugas: Acta Mater., 1999, vol. 47, pp. 3617-32.

    Article  Google Scholar 

  41. C. Keller, E. Hug, and X. Feaugas: Int. J. Plasticity, 2011, vol. 27, pp. 635-54.

    Article  Google Scholar 

  42. P. Franciosi, M. Berveiller, and A. Zaoui: Acta Metall., 1980, vol. 28, pp. 273-83.

    Article  Google Scholar 

  43. P. Franciosi: Acta Metall., 1985, vol. 33, pp. 1601-12.

    Article  Google Scholar 

  44. L.P. Kubin and Y. Estrin: Revue. Phys. Appl., 1988, vol. 23, pp. 573-83.

    Article  Google Scholar 

  45. L.P. Kubin and Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697-708.

    Article  Google Scholar 

  46. G. Ananthakrishna: Phys. Rep., 2007, vol. 440, pp. 113–259.

  47. R.E. Stoltz and J.B. Vander Sande: Metall. Trans. A, 1980, vol. 11, pp. 1033-7.

    Article  Google Scholar 

  48. P. Mullner, C. Solenthaler, P. Uggowitzer, and M.O. Speidel: Mater. Sci. Eng. A, 1993, vol. 164, pp. 164-169.

    Article  Google Scholar 

  49. Y. Kaneko, K. Kaneko, A. Nohara, and H. Saka: Philos. Mag. A, 1995, vol. 71, pp. 399-407.

    Article  Google Scholar 

  50. G.W. Han, I.P. Jones, and R.E. Smallman: Acta Mater., 2003, vol. 51, pp. 2731-42.

    Article  Google Scholar 

  51. M. Fujita, Y. Kaneko, A. Nohara, H. Saka, R. Zauter, and H. Mughrabi: ISIJ Int., 1994, vol. 34, pp. 697-703.

    Article  Google Scholar 

  52. O.D. Sherby, R.A. Anderson, and J.E. Dorn: J. Metals, 1951, vol. 3, pp. 643-52.

    Google Scholar 

  53. J.G. Morris: Mater. Sci. Eng., 1974, vol. 13, pp. 101-8.

    Article  Google Scholar 

  54. W. Karlsen, M. Ivanchenko, U. Ehrnsten, Y. Yagodzinskyy, and H. Hanninen: J. Nucl. Mater., 2009, vol. 395, pp. 156-61.

    Article  Google Scholar 

  55. A.K. Roy, J. Pal, and C. Mukhopadhyay: Mater. Sci. Eng. A, 2008, vol. 474, pp. 363-70.

    Article  Google Scholar 

  56. A.K. Roy, P. Kumar, and D. Maitra: Mater. Sci. Eng. A, 2009, vol. 499, pp. 379-86.

    Article  Google Scholar 

  57. B.K. Choudhary and J. Christopher: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4968-78.

    Article  Google Scholar 

  58. K.D. Challenger and J. Moteff: Scripta Metall., 1972, vol. 6, pp. 155-60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Choudhary.

Additional information

Manuscript submitted March 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christopher, J., Choudhary, B.K. Kinetics of Uniaxial Tensile Flow and Work Hardening Behavior of Type 316L(N) Austenitic Stainless Steel in the Framework of Two-Internal-Variable Approach. Metall Mater Trans A 46, 674–687 (2015). https://doi.org/10.1007/s11661-014-2660-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2660-z

Keywords

Navigation