Skip to main content
Log in

The Effect of Solute Nb on the Austenite-to-Ferrite Transformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstracts

Niobium is a widely used micro-alloying element in steels that can retard the austenite-to-ferrite transformation primarily by solute drag when Nb remains in solution. It is critical to develop quantitative models to predict the effect of Nb on the transformation kinetics. In the present work, dedicated continuous cooling transformation (CCT) studies were performed for a low-carbon steel microalloyed with 0.047 wt pct Nb starting from fully recrystallized austenite states with the same grain size but different amounts of Nb in solution. The austenite-to-ferrite transformation kinetics is described from a fundamental perspective by assuming a mixed-mode reaction including solute drag of Nb. Using the solute drag model of Fazeli and Militzer, the intrinsic interface mobility, trans-interface diffusivity of Nb, and its binding energy to the interface have been determined from the CCT data. The interfacial parameters are critically analyzed and compared with independent measurements of diffusion and grain boundary segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.J. DeArdo: Int. Mater. Rev., 2003, vol. 48, pp. 371-402.

    Article  Google Scholar 

  2. R.I. Rees, J. Perdrix, T. Maurickx and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 194A, pp. 179-186.

    Article  Google Scholar 

  3. X.Q. Yuan, Z.Y. Liu, S.H. Jiao, L.Q. Ma and G.D. Wang: ISIJ Int., 2006, vol. 46, pp. 579-585.

    Article  Google Scholar 

  4. M.H. Thomas and G.M. Michal: in Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1981, pp. 469–73.

  5. M. Suehiro, Z.K. Liu and J. Ågren: Acta Mater., 1996, vol. 44, pp. 4241-4251.

    Article  Google Scholar 

  6. C. Fossaert, G. Rees, T. Maurickx and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 21-30.

    Article  Google Scholar 

  7. K.J. Lee and J.K. Lee: Scripta Mater., 1999, vol. 40, pp. 831-836.

    Article  Google Scholar 

  8. T. Furuhara, T. Yamaguchi, G. Miyamoto and T. Maki: Mater. Sci. Technol., 2010, vol. 26, pp. 392-397.

    Article  Google Scholar 

  9. G. Purdy, J. Ågren, A. Borgenstam, Y. Bréchet, M. Enomoto, T. Furuhara, E. Gamsjäger, M. Gouné, M. Hillert, C. Hutchinson, M. Militzer, and H. Zurob: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3703–18.

    Article  Google Scholar 

  10. A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano and G.R. Purdy: Metall. Mater. Trans. A, 2004, Vol. 35A, pp. 1237-1242.

    Article  Google Scholar 

  11. C.R. Hutchinson, A. Fuchsmann, H.S. Zurob and Y. Bréchet: Scripta Mater., 2004, vol. 50, pp. 285-290.

    Article  Google Scholar 

  12. C.R. Hutchinson, H.S. Zurob and Y. Brechet: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1711-1720.

    Article  Google Scholar 

  13. H.S. Zurob, D. Panahi, C.R. Hutchinson, Y.J.M. Bréchet and G.R. Purdy: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3456-3471.

    Article  Google Scholar 

  14. A. Béché, H.S. Zurob and C.R. Hutchinson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2950-2955.

    Article  Google Scholar 

  15. C. Qiu, H.S. Zurob, D. Panahi, Y.J.M. Bréchet, G.R. Purdy and C.R. Hutchinson: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3472-3483.

    Article  Google Scholar 

  16. M. Militzer, M.G. Mecozzi, J. Sietsma and S. van der Zwaag: Acta Mater., 2006, vol.54, pp. 3961-3972.

    Article  Google Scholar 

  17. M.G. Mecozzi, M. Militzer, J. Sietsma, and S. van der Zwaag: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1237–47.

    Article  Google Scholar 

  18. F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1395-1405.

    Article  Google Scholar 

  19. T. Jia and M. Militzer: ISIJ Int., 2012, vol. 52, pp. 644-649.

    Article  Google Scholar 

  20. E. Gamsjäger, M. Militzer, F. Fazeli, J. Svoboda, F. D. Fischer: Comput. Mater. Sci., 2006, Vol 37, pp. 94-100.

    Article  Google Scholar 

  21. H. Chen, B. Appolaire, S. van der Zwaag: Acta Mater., 2011, vol.59, pp. 6751-6760.

    Article  Google Scholar 

  22. M. Gómez, S.F. Medina and G. Caruana: ISIJ Int., 2003, vol. 43, pp. 1228-1237.

    Article  Google Scholar 

  23. J. Majta, A.K. Zurek, M. Cola, P. Hochanadel and M. Pietrzyk: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1509-1520.

    Article  Google Scholar 

  24. E. Gamsjäger, J. Svoboda, F.D. Fischer: Comput. Mater. Sci., 2005, vol. 32, pp. 360-369.

    Article  Google Scholar 

  25. E. Gamsjäger, H. Chen, S. van der Zwaag: Comput. Mater. Sci., 2014, vol. 83, pp. 92 - 100.

    Article  Google Scholar 

  26. M.G. Mecozzi, J. Sietsma and S. van der Zwaag: Acta Mater., 2006, vol. 54, pp. 1431-1440.

    Article  Google Scholar 

  27. Y. Takahama and J. Sietsma: ISIJ Int., 2008, vol. 48, pp. 512-517.

    Article  Google Scholar 

  28. G.P. Krielaart and S. van der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10-18.

    Article  Google Scholar 

  29. H. Strandlund, J. Odqvist and J. Ågren. Comp. Mater. Sci., 2008, vol. 44, pp. 265-273.

    Article  Google Scholar 

  30. S. Gerami: Master’s Thesis, University of British Columbia, Vancouver, 2010.

  31. H. K. D. H. Bhadeshia, S. A. David, J. M. Vitek, R. W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp.686-698.

    Article  Google Scholar 

  32. J.S. Park, Y.S. Ha, S.J. Lee and Y.K. Lee: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 560-568.

    Article  Google Scholar 

  33. M. Militzer, R. Pandi and E.B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1547-1556.

    Article  Google Scholar 

  34. M. Militzer, F. Fazeli and H. Azizi-Alizamini, Metallurgia Italiana, 2011, vol. 103, pp. 35-41.

    Google Scholar 

  35. M. Militzer, F. Fazeli, and T. Jia: Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels: Volume 1, H. Mohrbacher, ed., CBMM/IMOA/TMS, 2014, pp. 23–36.

  36. J. Geise and C. Herzig: Z. Metallk., 1985, vol. 76, pp. 622-626.

    Google Scholar 

  37. C. Herzig, J. Geise, and S.V. Divinski: Z. Metallk., 2002, vol. 93, pp. 1180-1187.

    Article  Google Scholar 

  38. S. Akamatsu, T. Senuma and M. Hasebe: ISIJ Int., 1992, vol. 32, pp. 275-282.

    Article  Google Scholar 

  39. E. Kozeschnik, E. Gamsjäger: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1791-1797.

    Article  Google Scholar 

  40. N. Maruyama, G.D.W. Smith and A. Cerezo: Mater. Sci. Eng. A, 2003, vol. 353A, pp. 126-132.

    Article  Google Scholar 

  41. C.W. Sinclair, C.R. Hutchinson and Y. Bréchet: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 821-830.

    Article  Google Scholar 

  42. H. Jin, I. Elfimov, and M. Militzer: J. Appl. Phys., 2014, vol. 115, pp. 093506 (8 pp).

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada, the National Natural Science Foundation of China (Grant No. 51204048) and the Fundamental Research Funds for the Central Universities (Grant No. N120407008) for financial support. The steel was supplied by Essar Steel Algoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jia.

Additional information

Manuscript submitted March 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Militzer, M. The Effect of Solute Nb on the Austenite-to-Ferrite Transformation. Metall Mater Trans A 46, 614–621 (2015). https://doi.org/10.1007/s11661-014-2659-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2659-5

Keywords

Navigation