Skip to main content
Log in

The Influences of Carbon and Molybdenum on the Progress of Liquid Phase Sintering and the Microstructure of Boron-Containing Powder Metallurgy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Boron is an optimal alloying element for liquid phase sintering (LPS) of powder metallurgy (PM) Fe-based materials. However, the influences of various alloying elements on the progress of LPS are still undetermined. The aim of this study was to clarify the effects of carbon and molybdenum on the LPS and microstructure of boron-containing PM steel. The results showed that adding 0.5 wt pct C and 1.5 wt pct Mo, and particularly the former, promotes the LPS and increases the sintered density. With the addition of 0.5 wt pct C, liquid can be generated in two distinct regions, and the secondary liquid improves the densification. After 1523 K (1250 °C) sintering, the increases in sintered densities of Fe-0.4B, Fe-0.4B-1.5Mo, Fe-0.4B-0.5C, and Fe-0.4B-1.5Mo-0.5C steels were 0.33, 0.47, 0.56, and 0.64 g/cm3, respectively. Thermodynamic simulation also demonstrated that the increases in sintered densities were correlated with the liquid volumes formed at 1523 K (1250 °C). In conclusion, adding 0.5 wt pct C to B-containing PM steels facilitates the formation of a secondary liquid phase and higher liquid volume, resulting in better densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Campos, J. Sicre-Artalejo, J. J. Munoz, and J. M. Torralba: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1847-54.

    Article  Google Scholar 

  2. M. Gauthier, S. Metcalfe, S. Pelletier, and T. F. Stephenson: Powder Metall., 2011, vol. 54, pp. 628-35.

    Article  Google Scholar 

  3. K. S. Moghaddam and N. Solimanjad: Powder Metall., 2013, vol. 56, pp. 245-50.

    Article  Google Scholar 

  4. F. Bernier, P. Plamondon, J. P. Baïlon, and G. L’Espèrance: Powder Metall., 2011, vol. 54, pp. 559-65.

    Article  Google Scholar 

  5. M. W. Wu, K. S. Hwang, and H. S. Huang: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1598-1607.

    Article  Google Scholar 

  6. M. W. Wu, L. C. Tsao, G. J. Shu, and B. H. Lin: Mater. Sci. Eng. A, 2012, vol. 538, pp. 135-44.

    Article  Google Scholar 

  7. M. W. Wu, G. J. Shu, S. Y. Chang, and B. H. Lin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3866-75.

    Article  Google Scholar 

  8. J. M. Torralba, A. Navarro, and M. Campos: Mater. Sci. Eng. A, 2013, vol. 573, pp. 253-56.

    Article  Google Scholar 

  9. R. Oro, M. Campos, J. M. Torralba, and C. Capdevila: Powder Metall., 2012, vol. 55, pp. 294-301.

    Article  Google Scholar 

  10. B. A. Gething, D. F. Heaney, D. A. Koss, and T. J. Mueller: Mater. Sci. Eng. A, 2005, vol. 390, pp. 19-26.

    Article  Google Scholar 

  11. H. Danninger, C. Xu, G. Khatibi, B. Weiss, and B. Lindqvist: Powder Metall., 2012, vol. 55, pp. 378-87.

    Article  Google Scholar 

  12. X. Denga, G. Piotrowski, N. Chawla, and K.S. Narasimhan: Mater. Sci. Eng. A, 2008, vol. 491, pp. 19-27.

    Article  Google Scholar 

  13. T. M. Puscas, M. Signorini, A. Molinari, and G. Straffelini: Mater. Charact., 2003, vol. 50, pp. 1-10.

    Article  Google Scholar 

  14. R. M. German, K. S. Hwang, and D. S. Madan: Powder Metall. Int., 1987, vol. 19, pp. 15-18.

    Google Scholar 

  15. E. Dudrová, M. Selecká, R. Bureś, and M. Kabátová: ISIJ Int., 1997, vol. 37, pp. 59-64.

    Article  Google Scholar 

  16. M. Selecká, A. Šalak, and H. Danninger: J. Mater. Process. Technol., 2003, vol. 143-144, pp. 910-915.

    Article  Google Scholar 

  17. M. Sarasola, T. G. Acebo, and F. Castro: Acta Mater., 2004, vol. 52, pp. 4615-22.

    Article  Google Scholar 

  18. M. Sarasola, T. G. Acebo, and F. Castro: Powder Metall., 2005, vol. 48, pp. 59-67.

    Article  Google Scholar 

  19. A. Molinari, T. Pieczonka, J. Kazior, S. Gialanella, and G. Straffelini: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1497-1506.

    Article  Google Scholar 

  20. J. K. Baczewska and M. Rosso: Powder Metall. Prog., 2006, vol. 6, pp. 11-19.

    Google Scholar 

  21. M. Momeni, C. Gierl, H. Danninger, and A. Avakemian: Powder Metall., 2012, vol. 55, pp. 54-64.

    Article  Google Scholar 

  22. J. Liu, A. Cardamone, T. Potter, R. M. German, and F. J. Semel: Powder Metall., 2000, vol. 43, pp. 57-61.

    Article  Google Scholar 

  23. Z. Xiu, A. Salwen, X. Qin, F. He, and X. Sun: Powder Metall., 2003, vol. 46, pp. 171-74.

    Article  Google Scholar 

  24. H. Ö. Gulsoy: Scripta Mater., 2005, vol. 52, pp. 187-92.

    Article  Google Scholar 

  25. T.B. Sercombe: Mater. Sci. Eng. A, 2003, vol. 363, pp. 242-52.

    Article  Google Scholar 

  26. T. B. Sercombe and G. B. Schaffer: Mater. Sci. Eng. A, 2010, vol. 528, pp. 751-55.

    Article  Google Scholar 

  27. G. Cui and Z. Kou: J. Alloys Compd., 2014, vol. 586, pp. 699-702.

    Article  Google Scholar 

  28. R. L. Lawcock and T. J. Davies: Powder Metall., 1990, vol. 33, pp. 147-50.

    Article  Google Scholar 

  29. C. T. Huang and K. S. Hwang: Powder Metall., 1996, vol. 39, pp. 119-23.

    Article  Google Scholar 

  30. A. Molinari, G. Straffelini, V. Fontanari, and R. Canteri: Powder Metall., 1992, vol. 35, pp. 285-91.

    Article  Google Scholar 

  31. G. Straffelini, V. Fontanari, A. Molinari, and B. Tesi: Powder Metall., 1993, vol. 36, pp. 135-41.

    Article  Google Scholar 

  32. K. Zhu, C. Oberbillig, C. Musik, D. Loison, T. Iung: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4222-31.

    Article  Google Scholar 

  33. B. Hwang, D. W. Suh, and S. J. Kim: Scripta Mater., 2011, vol. 64, pp. 1118-20.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Ministry of Science and Technology of the Republic of China for the support under contract number MOST 103-2221-E-027-132. My gratitude is also extended to QMP and Höganäs AB for providing the base powders and Yu-Chi Fan for the preparations of specimens investigated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wei Wu.

Additional information

Manuscript submitted May 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, MW. The Influences of Carbon and Molybdenum on the Progress of Liquid Phase Sintering and the Microstructure of Boron-Containing Powder Metallurgy Steel. Metall Mater Trans A 46, 467–475 (2015). https://doi.org/10.1007/s11661-014-2619-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2619-0

Keywords

Navigation