Skip to main content
Log in

A Comparative Study on Dwell Fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) Alloys on a Microstructure-Normalized Basis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dwell effects of Ti624x (x = 2 to 6) alloys, including dwell fatigue life debit, fracture mode and strain accumulation, were characterized and compared. With increasing Mo content, the dwell fatigue life debit decreases quickly, and dwell fatigue fracture exhibits a transition from subsurface to surface initiation. Accompanying these changes, the accumulated strain decreases, and the pattern of secondary cracks loses morphological features typical of dwell cracks. These variations in the fatigue behavior of Ti624x were attributed on the fundamental level to the dual effects of Mo: It decreases the β transus of titanium and, as a slow diffuser, reduces the rate of phase transformation from β to α. A higher Mo content encourages nucleation of multiple variants of α laths and promotes the transition from aligned colonies to basketweave microstructure during cooling after β forging. As a result both the grain size and microtexture intensity of α grains in the two-phase processed and heat treated microstructure are reduced. Smaller grain size of the alloys with higher Mo content produces smaller slip band spacing and reduces accumulated strain during dwell fatigue, thus reducing propensity for crack initiation. Microtexture was shown to be the direct cause of dwell sensitivity, and their relationship was described with the aid of a two-region redistribution model based on a previous two-element redistribution model proposed by Bache.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Banerjee and J. C. Williams: Acta Mater., 2013, vol. 61, pp. 844-79.

    Article  Google Scholar 

  2. J. C. Williams and E. A. Starke: Acta Mater., 2003, vol. 51, pp. 5775-99.

    Article  Google Scholar 

  3. G. Lütjering and J.C. Williams: Titanium. Springer Verlag, Berlin, 2007.

    Google Scholar 

  4. Z. Song and D. W. Hoeppner: Int. J. Fatigue, 1989, vol. 11, pp. 85-90.

    Article  Google Scholar 

  5. M. R. Bache: Int. J. Fatigue, 2003, vol. 25, pp. 1079-87.

    Article  Google Scholar 

  6. Transportation Safety Board of Canada: Uncontained Engine Failure, Report No. A97F0059, 1997.

  7. M. R. Bache, M. Cope, H. M. Davies, W. J. Evans, and G. Harrison: Int. J. Fatigue, 1997, vol. 19, pp. s83-s88.

    Article  Google Scholar 

  8. M. L. Thomsen and D. W. Hoeppner: Int. J. Fatigue, 1998, vol. 20, pp. 309-17.

    Article  Google Scholar 

  9. M. Kassner, Y. Kosaka, and J. Hall: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2383-89.

    Article  Google Scholar 

  10. V. Sinha, J. E. Spowart, M. J. Mills, and J. C. Williams: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1507–18.

    Article  Google Scholar 

  11. A. L. Pilchak and J. C. Williams: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1000-27.

    Article  Google Scholar 

  12. W.J. Evans: Proc. Third Int. Confer. Creep Fract. Eng. Mater. Struct., Institute of Materials, 1987, pp. 603–13.

  13. S.H. Spence, W.J. Evans, and M. Cope: Proc. 9th Int. Conf. Fract., B.L. Karihaloo, Y.W. Mai, M.I. Ripley, and R.O. Ritchie, eds., Pergamon Press Ltd, Sydney, 1997, pp. 1571–78.

  14. M. R. Bache: Int. J. Fatigue, 1999, vol. 21, pp. S105-S11.

    Article  Google Scholar 

  15. V. Sinha, M. J. Mills, and J. C. Williams: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3141-48.

    Article  Google Scholar 

  16. N. Gey, P. Bocher, E. Uta, L. Germain, and M. Humbert: Acta Mater., 2012, vol. 60, pp. 2647-55.

    Article  Google Scholar 

  17. R. Whittaker, K. Fox, and A. Walker: Mater. Sci. Technol., 2010, vol. 26, pp. 676-84.

    Article  Google Scholar 

  18. L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher: Acta Mater., 2008, vol. 56, pp. 4298-308.

    Article  Google Scholar 

  19. L. Germain, N. Gey, M. Humbert, P. Bocher, and M. Jahazi: Acta Mater., 2005, vol. 53, pp. 3535-43.

    Article  Google Scholar 

  20. Thomas R. Bieler and S. L. Semiatin: Int. J. Plast., 2002, vol. 18, pp. 1165-89.

    Article  Google Scholar 

  21. E. E. Sackett, L. Germain, and M. R. Bache: Int. J. Fatigue, 2007, vol. 29, pp. 2015-21.

    Article  Google Scholar 

  22. S. Ghosh and P. Chakraborty: Int. J. Fatigue, 2013, vol. 48, pp. 231-46.

    Article  Google Scholar 

  23. M. Anahid, M. K. Samal, and S. Ghosh: J. Mech. Phys. Solids, 2011, vol. 59, pp. 2157-76.

    Article  Google Scholar 

  24. F. P. E. Dunne and D. Rugg: Fatigue Fract. Eng. Mater. Struct., 2008, vol. 31, pp. 949-58.

    Article  Google Scholar 

  25. K. Kirane and S. Ghosh: Int. J. Fatigue, 2008, vol. 30, pp. 2127-39.

    Article  Google Scholar 

  26. F. P. E. Dunne, D. Rugg, and A. Walker: Int. J. Plast., 2007, vol. 23, pp. 1061-83.

    Article  Google Scholar 

  27. A. N. Stroh: Proc. R. Soc. Lond. A, 1954, vol. 223, pp. 404–14.

    Article  Google Scholar 

  28. N. Gey, P. Bocher, E. Uta, M. Humbert, and J. Gilgert: Proc. 12th World Confer. Titan., L. Zhou, H. Chang, Y.F. Lu, and D.S. Xu, eds., Science Press, Beijing, 2011, pp. 879–82.

  29. E. Uta, N. Gey, P. Bocher, M. Humbert, and J. Gilgert: J. Microsc., 2009, vol. 233, pp. 451-59.

    Article  Google Scholar 

  30. A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, and B. Yamrom: in Titanium’ 95: Sci. Technol., P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Materials, Birmingham, 1995, pp. 1116–23.

  31. M.R. Bache, C. Pleydell-Pearce, R. Ding, and I.P. Jones: Proc. 12th World Conf. Titan., L. Zhou, H. Chang, Y.F. Lu, and D.S. Xu, eds., Science Press, Beijing, 2011, pp. 1152–55.

  32. F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2008, vol. 56, pp. 3951-62.

    Article  Google Scholar 

  33. S. I. Rokhlin, J. Y. Kim, B. Xie, V. A. Yakovlev, and B. Zoofan: Proc. 29th Ann. Rev. Progr. Quant. Nondestr. Eval., D.O. Thompson and D.E. Chimenti, eds., American Institute of Physics, Melville, 2002, vol. 20, pp. 1371–78.

  34. S. I. Rokhlin, J. Y. Kim, B. Xie, and B. Zoofan: NDT & E Int., 2007, vol. 40, pp. 462-70.

    Article  Google Scholar 

  35. T. Neeraj and M. J. Mills: Mater. Sci. Eng. A, 2001, vol. 319, pp. 415-19.

    Article  Google Scholar 

  36. T. Neeraj, D. H. Hou, G. S. Daehn, and M. J. Mills: Acta Mater., 2000, vol. 48, pp. 1225-38.

    Article  Google Scholar 

  37. J. C. Williams, R. G. Baggerly, and N. E. Paton: Metall. Mater. Trans. A, 2002, vol. 33, pp. 837-50.

    Article  Google Scholar 

  38. M. J. Blackburn and J. C. Williams: ASM Trans. Q., 1969, vol. 62, pp. 398-409.

    Google Scholar 

  39. M. Zhang, F. Bridier, P. Villechaise, J. Mendez, and D. L. McDowell: Acta Mater., 2010, vol. 58, pp. 1087-96.

    Article  Google Scholar 

  40. L. Xiao and Y. Umakoshi: J. Mater. Sci. Lett., 2002, vol. 21, pp. 517-19.

    Article  Google Scholar 

  41. L. Xiao and Y. Umakoshi: Philos. Mag. A, 2002, vol. 82, pp. 2379-96.

    Google Scholar 

  42. I. Bantounas, D. Dye, and T. C. Lindley: Acta Mater., 2009, vol. 57, pp. 3584-95.

    Article  Google Scholar 

  43. A.L. Pilchak, M.C. Brandes, R.E.A. Williams, and J.C. Williams: Proc. 12th World Conf. Titan., L. Zhou, H. Chang, Y.F. Lu, and D.S. Xu, eds., Science Press, Beijing, 2011, pp. 993–97.

  44. I. Bantounas, T. C. Lindley, D. Rugg, and D. Dye: Acta Mater., 2007, vol. 55, pp. 5655-65.

    Article  Google Scholar 

  45. F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555-67.

    Article  Google Scholar 

  46. F. P. E. Dunne, A. Walker, and D. Rugg: Proc. R. Soc. A, 2007, vol. 463, pp. 1467-89.

    Article  Google Scholar 

  47. S. B. Biner and J. R. Morris: Philos. Mag., 2003, vol. 83, pp. 3677-90.

    Article  Google Scholar 

  48. C. Déprés, C. F. Robertson, and M. C. Fivel: Philos. Mag., 2004, vol. 84, pp. 2257-75.

    Article  Google Scholar 

  49. D. R. Mitchell and T. J. Tucker: Weld. J., 1969, vol. 48, pp. S23-S33.

    Google Scholar 

  50. T. Ahmed and H. J. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206-11.

    Article  Google Scholar 

Download references

Acknowledgments

The support of this work by the National Science Foundation of China through Grant 51171195 is gratefully acknowledged. We thank Dr. Dongsheng Xu for his constructive discussion throughout this work and appreciate the help of Dr. Jun Tan, Mr. Miao Song and Mr. Jinglong Wen from Shenyang National Laboratory for Materials Science for their help with EBSD analysis, TEM and fatigue tests, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yang.

Additional information

Manuscript submitted May 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Ma, Y., Lei, J. et al. A Comparative Study on Dwell Fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) Alloys on a Microstructure-Normalized Basis. Metall Mater Trans A 45, 6075–6087 (2014). https://doi.org/10.1007/s11661-014-2541-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2541-5

Keywords

Navigation