Skip to main content
Log in

Clustering and Vacancy Behavior in High- and Low-Solute Al-Mg-Si Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The precipitate microstructure and vacancy distribution in Al-Mg-Si alloys with different amounts of solute and different heat treatments were investigated by transmission electron microscopy and muon spin relaxation measurements. A high amount of vacancies is normally present in Al-Mg-Si alloys as these bind to atomic clusters. We observe these vacancies to leave the material not before over-aging at very high temperatures such as 623 K (350 °C), meaning that vacancies do not bind to incoherent over-aged precipitates. For samples only stored at room temperature after solution heat treatment, a reduction of muon trapping was found at a temperature of 140 K (−133 °C) when reducing the amount of solute in the alloy. This might be connected to a lower number density of Cluster (1), which contrary to Cluster (2) do not nucleate precipitates upon further aging of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.A. Edwards, K. Stiller, G.L. Dunlop and M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893–3904.

    Article  Google Scholar 

  2. K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio and S. Ikeno: J. Mater.Sci., 2000, vol. 35, pp. 179–189.

    Article  Google Scholar 

  3. H.W. Zandbergen, S.J. Andersen, and J. Jansen, Science, 1997, vol. 277, pp. 1221–1225.

    Article  Google Scholar 

  4. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater., 2007, vol. 55, pp. 3815–3823.

    Article  Google Scholar 

  5. C. Ravi and C. Wolverton, Acta Mater., 2004, vol. 52, pp. 4213–4227.

    Article  Google Scholar 

  6. C.D. Marioara, H. Nordmark, S.J. Andersen and R. Holmestad: J. Mater. Sci., 2006, vol. 41, pp. 471–478.

    Article  Google Scholar 

  7. A. Serizawa, S. Hirosawa and T. Sato: Metall. Mater. Trans. A, 2008, vol. 39, pp. 243–251.

    Article  Google Scholar 

  8. S. Kim, J. Kim, H. Tezuka, E. Kobayashi and T. Sato: Mater. Trans., 2013, vol. 54, pp. 297–303.

    Article  Google Scholar 

  9. F. De Geuser, W. Lefebvre and D. Blavette: Philos. Mag. Lett., 2006, vol. 86, 227–234.

    Article  Google Scholar 

  10. C.S.T. Chang, I. Wieler, N. Wanderka and J. Banhart: Ultramicroscopy, 2009, vol. 109, pp. 585–592.

    Article  Google Scholar 

  11. F.A. Martinsen, F.J.H. Ehlers, M. Torsæter and R. Holmestad: Acta Mater., 2012, vol. 60, pp. 6091–6101.

    Article  Google Scholar 

  12. M, Doyama. T. Hatano, T. Natsui, Y. Suzuki, Y.J. Uemura, T. Yamazaki, J.H. Brewer, K. Crowe, Hyperfine Interact., 17: 225–229 (1984).

    Article  Google Scholar 

  13. A. Dupasquier, G. Kögel and A. Somoza: Acta mater., 2004, vol. 52, pp. 4707–4726.

    Article  Google Scholar 

  14. J. Banhart, M.D.H. Lay, C.S.T. Chang and A.J. Hill: Phys. Rev. B, 2011, vol. 83, pp. 014101.

    Article  Google Scholar 

  15. A.Yaouanc and P.D. de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter. Oxford University Press, Oxford, (2011), p. 115.

    Google Scholar 

  16. S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara and R. Holmestad: Acta mater., 2013, vol. 61, pp. 6082–6092.

    Article  Google Scholar 

  17. T. Matsuzaki, K. Ishida, K. Nagamine, I. Watanabe, G.H. Eaton and W.G. Williams: Nucl. Instr. Methods A, 2001, vol. 465, pp. 365–383.

    Article  Google Scholar 

  18. S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt and C.D. Marioara: Phys. Rev. B., 2012, vol. 86, pp. 104201.

    Article  Google Scholar 

  19. C.D. Marioara, S.J. Andersen, H.W. Zandbergen and R. Holmestad: Metall. Mater. Trans. A, 2005, vol. 36, pp. 691–702.

    Google Scholar 

  20. H.S. Zurob and H. Seyedrezai, Scripta Mater., 2009, vol. 61, pp. 141–144.

    Article  Google Scholar 

  21. S. Wenner, C.D. Marioara, S.J. Andersen and R. Holmestad: Int. J. Mater. Res., 2012, vol. 103, pp. 948–954.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Research Council of Norway and Norsk Hydro via project no. 193619, The Norwegian–Japanese Al-Mg-Si Alloy Precipitation Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd Wenner.

Additional information

Manuscript submitted April 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenner, S., Nishimura, K., Matsuda, K. et al. Clustering and Vacancy Behavior in High- and Low-Solute Al-Mg-Si Alloys. Metall Mater Trans A 45, 5777–5781 (2014). https://doi.org/10.1007/s11661-014-2527-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2527-3

Keywords

Navigation